Arne Maes, Onno Borgel, Clara Braconnier, Tim Balcaen, Martine Wevers, Rebecca Halbgebauer, Markus Huber-Lang, G. Kerckhofs
{"title":"X-Ray-Based 3D Histopathology of the Kidney Using Cryogenic Contrast-Enhanced MicroCT","authors":"Arne Maes, Onno Borgel, Clara Braconnier, Tim Balcaen, Martine Wevers, Rebecca Halbgebauer, Markus Huber-Lang, G. Kerckhofs","doi":"10.1155/2024/3924036","DOIUrl":null,"url":null,"abstract":"The kidney's microstructure, which comprises a highly convoluted tubular and vascular network, can only be partially revealed using classical 2D histology. Considering that the kidney's microstructure is closely related to its function and is often affected by pathologies, there is a need for powerful and high-resolution 3D imaging techniques to visualize the microstructure. Here, we present how cryogenic contrast-enhanced microCT (cryo-CECT) allowed 3D visualization of glomeruli, tubuli, and vasculature. By comparing different contrast-enhancing staining agents and freezing protocols, we found that the preferred sample preparation protocol was the combination of staining with 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate and freezing by submersion in isopentane at −78°C. This optimized protocol showed to be highly sensitive, allowing to detect small pathology-induced microstructural changes in a mouse model of mild trauma-related acute kidney injury after thorax trauma and hemorrhagic shock. In summary, we demonstrated that cryo-CECT is an effective 3D histopathological tool that allows to enhance our understanding of kidney tissue microstructure and their related function.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3924036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The kidney's microstructure, which comprises a highly convoluted tubular and vascular network, can only be partially revealed using classical 2D histology. Considering that the kidney's microstructure is closely related to its function and is often affected by pathologies, there is a need for powerful and high-resolution 3D imaging techniques to visualize the microstructure. Here, we present how cryogenic contrast-enhanced microCT (cryo-CECT) allowed 3D visualization of glomeruli, tubuli, and vasculature. By comparing different contrast-enhancing staining agents and freezing protocols, we found that the preferred sample preparation protocol was the combination of staining with 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate and freezing by submersion in isopentane at −78°C. This optimized protocol showed to be highly sensitive, allowing to detect small pathology-induced microstructural changes in a mouse model of mild trauma-related acute kidney injury after thorax trauma and hemorrhagic shock. In summary, we demonstrated that cryo-CECT is an effective 3D histopathological tool that allows to enhance our understanding of kidney tissue microstructure and their related function.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics