{"title":"Optimizing Neuroprotective Nano-structured Lipid Carriers for Transdermal Delivery through Artificial Neural Network.","authors":"Saloni Dalwadi, Vaishali Thakkar, B. Prajapati","doi":"10.2174/0122117385294969240326052312","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nDementia associated with Alzheimer's disease (AD) is a neurological disorder. AD is a progressive neurodegenerative condition that predominantly impacts the elderly population, although it can also manifest in younger people through the impairment of cognitive functions, such as memory, cognition, and behaviour. Donepezil HCl and Memantine HCl are encapsulated in Nanostructured Lipid Carriers (NLCs) to prolong systemic circulation and minimize the systemic side effects.\n\n\nOBJECTIVE\nThis work explores the use of data mining tools to optimize the formulation of NLCs comprising of Donepezil HCl and Memantine HCl for transdermal drug delivery. Neuroprotective drugs and excipients are utilized for protecting the nervous system against damage or degeneration.\n\n\nMETHOD\nThe NLCs were formulated using a high-speed homogenization technique followed by ultrasonication. NLCs were optimized using Box Behnken Design (BBD) in Design Expert Software and artificial neural network (ANN) in IBM SPSS statistics. The independent variables included the ratio of solid lipid to liquid lipid, the percentage of surfactant, and the revolutions per minute (RPM) of the high-speed homogenizer.\n\n\nRESULTS\nThe NLCs that were formulated had a mean particle size ranging from 67.0±0.45 to 142.4±0.52nm. Both drugs have a %EE range over 75%, and Zeta potential was determined to be - 26±0.36mV. CryoSEM was used to do the structural study. The permeation study showed the prolonged release of the formulation.\n\n\nCONCLUSION\nThe results indicate that NLCs have the potential to be a carrier for transporting medications to deeper layers of the skin and reaching systemic circulation, making them a suitable formulation for the management of Dementia. Both ANN and BBD techniques are effective tools for systematically developing and optimizing NLC formulation.","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":"59 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385294969240326052312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Dementia associated with Alzheimer's disease (AD) is a neurological disorder. AD is a progressive neurodegenerative condition that predominantly impacts the elderly population, although it can also manifest in younger people through the impairment of cognitive functions, such as memory, cognition, and behaviour. Donepezil HCl and Memantine HCl are encapsulated in Nanostructured Lipid Carriers (NLCs) to prolong systemic circulation and minimize the systemic side effects.
OBJECTIVE
This work explores the use of data mining tools to optimize the formulation of NLCs comprising of Donepezil HCl and Memantine HCl for transdermal drug delivery. Neuroprotective drugs and excipients are utilized for protecting the nervous system against damage or degeneration.
METHOD
The NLCs were formulated using a high-speed homogenization technique followed by ultrasonication. NLCs were optimized using Box Behnken Design (BBD) in Design Expert Software and artificial neural network (ANN) in IBM SPSS statistics. The independent variables included the ratio of solid lipid to liquid lipid, the percentage of surfactant, and the revolutions per minute (RPM) of the high-speed homogenizer.
RESULTS
The NLCs that were formulated had a mean particle size ranging from 67.0±0.45 to 142.4±0.52nm. Both drugs have a %EE range over 75%, and Zeta potential was determined to be - 26±0.36mV. CryoSEM was used to do the structural study. The permeation study showed the prolonged release of the formulation.
CONCLUSION
The results indicate that NLCs have the potential to be a carrier for transporting medications to deeper layers of the skin and reaching systemic circulation, making them a suitable formulation for the management of Dementia. Both ANN and BBD techniques are effective tools for systematically developing and optimizing NLC formulation.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.