On Period Annuli and Induced Chaos

S. Atslega, O. Kozlovska, F. Sadyrbaev
{"title":"On Period Annuli and Induced Chaos","authors":"S. Atslega, O. Kozlovska, F. Sadyrbaev","doi":"10.37394/23202.2024.23.17","DOIUrl":null,"url":null,"abstract":"Nontrivial period annuli in the second order ordinary differential equation are continua of periodic trajectories that contain inside more than one critical point. They can appear in conservative equations, which are known to have no attractors. Nevertheless, according to some authors, their behavior may be done chaotic by adding a periodic external force. Is the period of the external force correlated with periods of solutions in period annuli? Is the chaotic behavior of a solution dependent on the initial value and, in turn, on a certain periodic annulus? These, and related questions are studied in the article.","PeriodicalId":516312,"journal":{"name":"WSEAS TRANSACTIONS ON SYSTEMS","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23202.2024.23.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nontrivial period annuli in the second order ordinary differential equation are continua of periodic trajectories that contain inside more than one critical point. They can appear in conservative equations, which are known to have no attractors. Nevertheless, according to some authors, their behavior may be done chaotic by adding a periodic external force. Is the period of the external force correlated with periods of solutions in period annuli? Is the chaotic behavior of a solution dependent on the initial value and, in turn, on a certain periodic annulus? These, and related questions are studied in the article.
关于周期环和诱导混沌
二阶常微分方程中的非琐碎周期环是周期轨迹的连续体,其内部包含一个以上的临界点。它们可能出现在保守方程中,而众所周知,保守方程没有吸引子。然而,根据一些学者的观点,通过添加周期性外力,它们的行为可能会变得混乱。外力的周期与周期环中的解的周期是否相关?解的混沌行为是否取决于初始值,进而取决于某个周期环?文章对这些问题以及相关问题进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信