Taylor Shepherd Golden Optimization-Enabled ResUNet for Forest Change Detection Using Satellite Images

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
K. R. Gite, Praveen Gupta
{"title":"Taylor Shepherd Golden Optimization-Enabled ResUNet for Forest Change Detection Using Satellite Images","authors":"K. R. Gite, Praveen Gupta","doi":"10.1142/s0219467825500688","DOIUrl":null,"url":null,"abstract":"The pivotal task of remote sensing image (RSI) processing change detection (CD) highly aims to accurately detect changes in land cover based on multi-temporal images. With the advent of deep learning, technology has delivered remarkable results in the last years in the detection of variations in forest land cover data. Some of the conventional CD techniques are weak and are highly susceptible to errors and can result even in inaccurate outcomes. Thus, certain techniques are not desirable for real-time CD applications. To abridge this gap, this research introduces an innovative work for forest CD utilizing the proposed Taylor Shepherd Golden Optimization_ResUNet (TSGO_ResUNet) and Fuzzy Neural network (Fuzzy NN) for segment mapping. Here, the segmentation process is accomplished using ResUNet to determine the exact boundary or shape of each object for every pixel in the image. Furthermore, TSGO is achieved by consolidating Taylor Shuffled Shepherd Optimization (TSSO) with Golden Search Optimization (GSO). In addition, the devised TSGO_ResUNet + Fuzzy NN has gained maximum accuracy and kappa coefficient of 0.952 and 0.785, and minimum error rate of 0.051.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The pivotal task of remote sensing image (RSI) processing change detection (CD) highly aims to accurately detect changes in land cover based on multi-temporal images. With the advent of deep learning, technology has delivered remarkable results in the last years in the detection of variations in forest land cover data. Some of the conventional CD techniques are weak and are highly susceptible to errors and can result even in inaccurate outcomes. Thus, certain techniques are not desirable for real-time CD applications. To abridge this gap, this research introduces an innovative work for forest CD utilizing the proposed Taylor Shepherd Golden Optimization_ResUNet (TSGO_ResUNet) and Fuzzy Neural network (Fuzzy NN) for segment mapping. Here, the segmentation process is accomplished using ResUNet to determine the exact boundary or shape of each object for every pixel in the image. Furthermore, TSGO is achieved by consolidating Taylor Shuffled Shepherd Optimization (TSSO) with Golden Search Optimization (GSO). In addition, the devised TSGO_ResUNet + Fuzzy NN has gained maximum accuracy and kappa coefficient of 0.952 and 0.785, and minimum error rate of 0.051.
利用卫星图像探测森林变化的泰勒-谢泼德-戈登优化资源网络
遥感图像(RSI)处理中的关键任务--变化检测(CD)--高度旨在基于多时相图像准确检测土地覆盖的变化。随着深度学习技术的出现,过去几年中,该技术在森林土地覆盖数据变化检测方面取得了显著成果。一些传统的 CD 技术比较薄弱,极易出错,甚至会导致结果不准确。因此,某些技术在实时 CD 应用中并不可取。为了弥补这一不足,本研究介绍了一种利用泰勒-谢泼德黄金优化_ResUNet(TSGO_ResUNet)和模糊神经网络(Fuzzy NN)进行分段映射的森林 CD 创新方法。在这里,使用 ResUNet 完成分割过程,以确定图像中每个像素的每个对象的准确边界或形状。此外,TSGO 是通过将泰勒洗牌牧羊人优化法(TSSO)与黄金搜索优化法(GSO)相结合来实现的。此外,所设计的 TSGO_ResUNet + Fuzzy NN 获得了 0.952 和 0.785 的最高精确度和卡帕系数,以及 0.051 的最低错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信