Neural Network Modeling of an SLA Printed Mesostructure

Anne Schmitz
{"title":"Neural Network Modeling of an SLA Printed Mesostructure","authors":"Anne Schmitz","doi":"10.1115/1.4065291","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the scarcity of comprehensive studies on the collective impact of various parametric lattice designs on mesostructure functionality. Focusing on optimizing the energy absorption of a serpentine mesostructure made using SLA, this research leverages a feedforward neural network to explore the interplay between line width, number of turns, and material properties on the energy absorbed by the structure. Compression simulations using a finite element model, covering a range of configurations, provided the dataset for neural network training. The resulting network was used to probe correlations between geometric variables, material, and energy absorption. Additionally, a neural network sensitivity analysis explored the impact of hidden layers and number of neurons on the network's performance, demonstrating the network's robustness. The optimized mesostructure configuration, identified by the neural network, maximized energy absorption. Using foundational mechanics of materials concepts, the discussion explains the how the geometry and material of the cellular mesostructure affects structural stiffness.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the scarcity of comprehensive studies on the collective impact of various parametric lattice designs on mesostructure functionality. Focusing on optimizing the energy absorption of a serpentine mesostructure made using SLA, this research leverages a feedforward neural network to explore the interplay between line width, number of turns, and material properties on the energy absorbed by the structure. Compression simulations using a finite element model, covering a range of configurations, provided the dataset for neural network training. The resulting network was used to probe correlations between geometric variables, material, and energy absorption. Additionally, a neural network sensitivity analysis explored the impact of hidden layers and number of neurons on the network's performance, demonstrating the network's robustness. The optimized mesostructure configuration, identified by the neural network, maximized energy absorption. Using foundational mechanics of materials concepts, the discussion explains the how the geometry and material of the cellular mesostructure affects structural stiffness.
SLA 印刷中间结构的神经网络建模
关于各种参数化晶格设计对介质结构功能的共同影响的综合研究十分匮乏,本文针对这一问题进行了研究。本研究以优化使用 SLA 制造的蛇形介观结构的能量吸收为重点,利用前馈神经网络探索线宽、圈数和材料特性之间对结构能量吸收的相互影响。使用有限元模型进行的压缩模拟涵盖了一系列配置,为神经网络训练提供了数据集。由此产生的网络用于探究几何变量、材料和能量吸收之间的相关性。此外,神经网络灵敏度分析探索了隐藏层和神经元数量对网络性能的影响,证明了网络的鲁棒性。神经网络确定的优化中间结构配置最大限度地吸收了能量。讨论利用材料力学的基本概念,解释了细胞介质结构的几何形状和材料如何影响结构刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信