M. Nadolski, Ł. Bernat, D. Cekus, P. Kwiatoń, A. Pietrzak
{"title":"Analysis of Cooling a Printed 3D Mold Using a Casting and Solidification Simulation of a CuSn20 Bronze Bell Casting","authors":"M. Nadolski, Ł. Bernat, D. Cekus, P. Kwiatoń, A. Pietrzak","doi":"10.24425/amm.2024.147823","DOIUrl":null,"url":null,"abstract":"The work done in this study is a preliminary investigation into the possibility of modelling the filling and solidification process of castings in molds made with the additive method. The work originated from an experiment to produce a bronze casting with a high tin content in an additive mold. The mold filling and solidification simulation was carried out in the MAGMASO FT program, and the lambda thermal conductivity coefficient used in the program’s material database was corrected based on the actual temperature values of the printed form. The results were compared with the modeling results for the physical properties of furan molds based on the program database. The microstructure of the castings obtained in the compared forms was assessed.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.147823","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The work done in this study is a preliminary investigation into the possibility of modelling the filling and solidification process of castings in molds made with the additive method. The work originated from an experiment to produce a bronze casting with a high tin content in an additive mold. The mold filling and solidification simulation was carried out in the MAGMASO FT program, and the lambda thermal conductivity coefficient used in the program’s material database was corrected based on the actual temperature values of the printed form. The results were compared with the modeling results for the physical properties of furan molds based on the program database. The microstructure of the castings obtained in the compared forms was assessed.
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.