{"title":"Development of Highly Photoactive Mixed Metal Oxide (MMO) Based on the Thermal Decomposition of ZnAl-NO3-LDH","authors":"H. Asghar, Valter Maurino, Muhammad Ahsan Iqbal","doi":"10.3390/eng5020033","DOIUrl":null,"url":null,"abstract":"The highly crystalline ZnAl layered double hydroxides (ZnAl-NO3-LDHs) are utilized for the potential transformation into mixed metal oxides (MMOs) through thermal decomposition and used further for the photodegradation of phenol to assess the influence of calcination on ZnAl-LDHs with enhanced photoactivity. The structure, composition, and morphological evolution of ZnAl-LDHs to ZnO-based MMO nanocomposites, which are composed of ZnO and ZnAl2O4, after calcination at different temperatures (400–600 °C), are all thoroughly examined in this work. The final ZnO and ZnAl2O4-based nanocomposites showed enhanced photocatalytic activity. The findings demonstrated that calcining ZnAl-LDHs from 400 to 600 °C increased the specific surface area and also enhanced the interlayer spacing of d003 while the transformation of LDHs into ZnO/ZnAl2O4 nanocomposites through calcining the ZnAl-LDH precursor at 600 °C showed significant photocatalytic properties, leading to complete mineralization of phenol under UV irradiation.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eng","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng5020033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The highly crystalline ZnAl layered double hydroxides (ZnAl-NO3-LDHs) are utilized for the potential transformation into mixed metal oxides (MMOs) through thermal decomposition and used further for the photodegradation of phenol to assess the influence of calcination on ZnAl-LDHs with enhanced photoactivity. The structure, composition, and morphological evolution of ZnAl-LDHs to ZnO-based MMO nanocomposites, which are composed of ZnO and ZnAl2O4, after calcination at different temperatures (400–600 °C), are all thoroughly examined in this work. The final ZnO and ZnAl2O4-based nanocomposites showed enhanced photocatalytic activity. The findings demonstrated that calcining ZnAl-LDHs from 400 to 600 °C increased the specific surface area and also enhanced the interlayer spacing of d003 while the transformation of LDHs into ZnO/ZnAl2O4 nanocomposites through calcining the ZnAl-LDH precursor at 600 °C showed significant photocatalytic properties, leading to complete mineralization of phenol under UV irradiation.