{"title":"Precise orbit determination for low Earth orbit satellites using GNSS: Observations, models, and methods","authors":"Xinyuan Mao, Wenbing Wang, Yang Gao","doi":"10.1007/s42064-023-0195-z","DOIUrl":null,"url":null,"abstract":"<div><p>Spaceborne global navigation satellite system (GNSS) has significantly revolutionized the development of autonomous orbit determination techniques for low Earth orbit satellites for decades. Using a state-of-the-art combination of GNSS observations and satellite dynamics, the absolute orbit determination for a single satellite reached a precision of 1 cm. Relative orbit determination (i.e., precise baseline determination) for the dual satellites reached a precision of 1 mm. This paper reviews the recent advancements in GNSS products, observation processing, satellite gravitational and non-gravitational force modeling, and precise orbit determination methods. These key aspects have increased the precision of the orbit determination to fulfill the requirements of various scientific objectives. Finally, recommendations are made to further investigate multi-GNSS combinations, satellite high-fidelity geometric models, geometric offset calibration, and comprehensive orbit determination strategies for satellite constellations.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0195-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spaceborne global navigation satellite system (GNSS) has significantly revolutionized the development of autonomous orbit determination techniques for low Earth orbit satellites for decades. Using a state-of-the-art combination of GNSS observations and satellite dynamics, the absolute orbit determination for a single satellite reached a precision of 1 cm. Relative orbit determination (i.e., precise baseline determination) for the dual satellites reached a precision of 1 mm. This paper reviews the recent advancements in GNSS products, observation processing, satellite gravitational and non-gravitational force modeling, and precise orbit determination methods. These key aspects have increased the precision of the orbit determination to fulfill the requirements of various scientific objectives. Finally, recommendations are made to further investigate multi-GNSS combinations, satellite high-fidelity geometric models, geometric offset calibration, and comprehensive orbit determination strategies for satellite constellations.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.