Precise orbit determination for low Earth orbit satellites using GNSS: Observations, models, and methods

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Xinyuan Mao, Wenbing Wang, Yang Gao
{"title":"Precise orbit determination for low Earth orbit satellites using GNSS: Observations, models, and methods","authors":"Xinyuan Mao,&nbsp;Wenbing Wang,&nbsp;Yang Gao","doi":"10.1007/s42064-023-0195-z","DOIUrl":null,"url":null,"abstract":"<div><p>Spaceborne global navigation satellite system (GNSS) has significantly revolutionized the development of autonomous orbit determination techniques for low Earth orbit satellites for decades. Using a state-of-the-art combination of GNSS observations and satellite dynamics, the absolute orbit determination for a single satellite reached a precision of 1 cm. Relative orbit determination (i.e., precise baseline determination) for the dual satellites reached a precision of 1 mm. This paper reviews the recent advancements in GNSS products, observation processing, satellite gravitational and non-gravitational force modeling, and precise orbit determination methods. These key aspects have increased the precision of the orbit determination to fulfill the requirements of various scientific objectives. Finally, recommendations are made to further investigate multi-GNSS combinations, satellite high-fidelity geometric models, geometric offset calibration, and comprehensive orbit determination strategies for satellite constellations.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0195-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spaceborne global navigation satellite system (GNSS) has significantly revolutionized the development of autonomous orbit determination techniques for low Earth orbit satellites for decades. Using a state-of-the-art combination of GNSS observations and satellite dynamics, the absolute orbit determination for a single satellite reached a precision of 1 cm. Relative orbit determination (i.e., precise baseline determination) for the dual satellites reached a precision of 1 mm. This paper reviews the recent advancements in GNSS products, observation processing, satellite gravitational and non-gravitational force modeling, and precise orbit determination methods. These key aspects have increased the precision of the orbit determination to fulfill the requirements of various scientific objectives. Finally, recommendations are made to further investigate multi-GNSS combinations, satellite high-fidelity geometric models, geometric offset calibration, and comprehensive orbit determination strategies for satellite constellations.

利用全球导航卫星系统精确确定低地球轨道卫星的轨道:观测、模型和方法
几十年来,空间全球导航卫星系统(GNSS)极大地推动了低地球轨道卫星自主轨道测定技术的发展。利用最先进的全球导航卫星系统观测和卫星动力学组合,单颗卫星的绝对轨道测定精度达到了 1 厘米。双卫星的相对轨道测定(即精确基线测定)精度达到了 1 毫米。本文回顾了全球导航卫星系统产品、观测处理、卫星引力和非引力建模以及精确轨道测定方法的最新进展。这些关键方面提高了轨道测定的精度,以满足各种科学目标的要求。最后,提出了进一步研究多全球导航卫星系统组合、卫星高保真几何模型、几何偏移校准和卫星星座综合轨道确定战略的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信