Ashik Tiwari, P. Poudel, Santosh Khanal, S. Lekhak, S. Adhikari, Ramesh Sharma Regmi, Supriya Sharma, Om Prakash Panta, T. Karki
{"title":"Emergence of mcr-1 Gene in Colistin-Resistant Escherichia coli Isolates from Chicken in Chitwan, Nepal.","authors":"Ashik Tiwari, P. Poudel, Santosh Khanal, S. Lekhak, S. Adhikari, Ramesh Sharma Regmi, Supriya Sharma, Om Prakash Panta, T. Karki","doi":"10.1089/fpd.2023.0151","DOIUrl":null,"url":null,"abstract":"The escalating prevalence of colistin-resistant Escherichia coli in poultry has emerged as a significant concern. This study aimed to assess the occurrence of the mcr-1 gene in colistin-resistant E. coli isolates from poultry samples. A cross-sectional study was conducted at National Avian Disease Investigation Laboratory, Nepal, on 210 chicken meat samples, including liver, heart, and spleen. E. coli was isolated and identified by conventional cultural methods. Antibiotic resistance pattern was assessed by the Kirby-Bauer disc diffusion method. The mcr-1 gene was detected by conventional polymerase chain reaction. The average viable count in chicken meat samples was log 6.01 CFU (colony-forming unit)/g, whereas the average coliform count was log 3.85 CFU/g. Coliforms were detected in at least one sample from 48.01% of total samples. The prevalence of E. coli in all meat samples was 39.52%. Liver accounted for the largest fraction of E. coli isolates (45.45%). Cefepime was the most effective antibiotic. Among all isolates, 45 (54.21%) were multidrug-resistant E. coli, 17 (20.48%) were colistin-resistant E. coli, and 11 (64.70%) harbored the mcr-1 gene. High prevalence of multidrug-resistant E. coli isolates, colistin-resistant isolates, and mcr-1 gene-carrying isolates indicates a serious concern, as it could potentially lead to colistin resistance in human pathogens through horizontal transfer of resistant genes from poultry to humans.","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2023.0151","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating prevalence of colistin-resistant Escherichia coli in poultry has emerged as a significant concern. This study aimed to assess the occurrence of the mcr-1 gene in colistin-resistant E. coli isolates from poultry samples. A cross-sectional study was conducted at National Avian Disease Investigation Laboratory, Nepal, on 210 chicken meat samples, including liver, heart, and spleen. E. coli was isolated and identified by conventional cultural methods. Antibiotic resistance pattern was assessed by the Kirby-Bauer disc diffusion method. The mcr-1 gene was detected by conventional polymerase chain reaction. The average viable count in chicken meat samples was log 6.01 CFU (colony-forming unit)/g, whereas the average coliform count was log 3.85 CFU/g. Coliforms were detected in at least one sample from 48.01% of total samples. The prevalence of E. coli in all meat samples was 39.52%. Liver accounted for the largest fraction of E. coli isolates (45.45%). Cefepime was the most effective antibiotic. Among all isolates, 45 (54.21%) were multidrug-resistant E. coli, 17 (20.48%) were colistin-resistant E. coli, and 11 (64.70%) harbored the mcr-1 gene. High prevalence of multidrug-resistant E. coli isolates, colistin-resistant isolates, and mcr-1 gene-carrying isolates indicates a serious concern, as it could potentially lead to colistin resistance in human pathogens through horizontal transfer of resistant genes from poultry to humans.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.