Janni Mosekær Nielsen, M. R. Rasmussen, S. Thorndahl, M. Ahm, Jesper Ellerbæk Nielsen
{"title":"Can stormwater runoff measurements be used for weather radar rainfall adjustment?","authors":"Janni Mosekær Nielsen, M. R. Rasmussen, S. Thorndahl, M. Ahm, Jesper Ellerbæk Nielsen","doi":"10.2166/hydro.2024.172","DOIUrl":null,"url":null,"abstract":"\n \n Predicting the response to rainfall in urban hydrological applications requires accurate precipitation estimates with a high spatiotemporal resolution to reflect the natural variability of rainfall. However, installing rain gauges under nearly ideal measurement conditions is often difficult in urban areas, if not impossible. This paper demonstrates the potential of deriving rainfall measurements in urban areas and bias-adjusting weather radar rainfall measurements using stormwater runoff measurements. As a supplement to point rainfall measurements from rain gauges, the developed bias adjustment approach uses catchment runoff-rainfall estimates derived from water level measurements of a stormwater detention pond. The study shows that the bias-adjusted radar product correlates highly with rain gauge measurements in the catchment. Moreover, the presented approach enables rainfall measurements within a catchment independent of rain gauges located in the catchment, making the technique highly applicable for increasing the density of ground observations and thus improving weather radar precipitation estimates over urban areas. The method also derives the catchment-specific runoff coefficient independently of expensive flow measurements in the catchment, making the method very scalable. This paper highlights the potential of using easily achievable catchment runoff-rainfall measurements to increase the density of available ground observations and thereby improve weather radar precipitation estimates.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"23 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the response to rainfall in urban hydrological applications requires accurate precipitation estimates with a high spatiotemporal resolution to reflect the natural variability of rainfall. However, installing rain gauges under nearly ideal measurement conditions is often difficult in urban areas, if not impossible. This paper demonstrates the potential of deriving rainfall measurements in urban areas and bias-adjusting weather radar rainfall measurements using stormwater runoff measurements. As a supplement to point rainfall measurements from rain gauges, the developed bias adjustment approach uses catchment runoff-rainfall estimates derived from water level measurements of a stormwater detention pond. The study shows that the bias-adjusted radar product correlates highly with rain gauge measurements in the catchment. Moreover, the presented approach enables rainfall measurements within a catchment independent of rain gauges located in the catchment, making the technique highly applicable for increasing the density of ground observations and thus improving weather radar precipitation estimates over urban areas. The method also derives the catchment-specific runoff coefficient independently of expensive flow measurements in the catchment, making the method very scalable. This paper highlights the potential of using easily achievable catchment runoff-rainfall measurements to increase the density of available ground observations and thereby improve weather radar precipitation estimates.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.