{"title":"A Basketball Big Data Platform for Box Score and Play-by-Play Data.","authors":"G. Vinué","doi":"10.1089/big.2023.0177","DOIUrl":null,"url":null,"abstract":"This is the second part of a research diptych devoted to improving basketball data management in Spain. The Spanish ACB (Association of Basketball Clubs, acronym in Spanish) is the top European national competition. It attracts most of the best foreign players outside the NBA (National Basketball Association, in North America) and also accelerates the development of Spanish players who ultimately contribute to the success of the Spanish national team. However, this sporting excellence is not reciprocated by an advanced treatment of the data generated by teams and players, the so-called statistics. On the contrary, their use is still very rudimentary. An earlier article published in this journal in 2020 introduced the first open web application for interactive visualization of the box score data from three European competitions, including the ACB. Box score data refer to the data provided once the game is finished. Following the same inspiration, this new research aims to present the work carried out with more advanced data, namely, play-by-play data, which are provided as the game runs. This type of data allow us to gain greater insight into basketball performance, providing information that cannot be revealed with box score data. A new dashboard is developed to analyze play-by-play data from a number of different and novel perspectives. Furthermore, a comprehensive data platform encompassing the visualization of the ACB box score and play-by-play data is presented.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2023.0177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This is the second part of a research diptych devoted to improving basketball data management in Spain. The Spanish ACB (Association of Basketball Clubs, acronym in Spanish) is the top European national competition. It attracts most of the best foreign players outside the NBA (National Basketball Association, in North America) and also accelerates the development of Spanish players who ultimately contribute to the success of the Spanish national team. However, this sporting excellence is not reciprocated by an advanced treatment of the data generated by teams and players, the so-called statistics. On the contrary, their use is still very rudimentary. An earlier article published in this journal in 2020 introduced the first open web application for interactive visualization of the box score data from three European competitions, including the ACB. Box score data refer to the data provided once the game is finished. Following the same inspiration, this new research aims to present the work carried out with more advanced data, namely, play-by-play data, which are provided as the game runs. This type of data allow us to gain greater insight into basketball performance, providing information that cannot be revealed with box score data. A new dashboard is developed to analyze play-by-play data from a number of different and novel perspectives. Furthermore, a comprehensive data platform encompassing the visualization of the ACB box score and play-by-play data is presented.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.