Sewer sediment deposition prediction using a two-stage machine learning solution

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marc Ribalta Gené, Ramón Béjar, Carles Mateu, Lluís Corominas, Oscar Esbrí, Edgar Rubión
{"title":"Sewer sediment deposition prediction using a two-stage machine learning solution","authors":"Marc Ribalta Gené, Ramón Béjar, Carles Mateu, Lluís Corominas, Oscar Esbrí, Edgar Rubión","doi":"10.2166/hydro.2024.144","DOIUrl":null,"url":null,"abstract":"\n \n Sediment accumulation in the sewer is a source of cascading problems if left unattended and untreated, causing pipe failures, blockages, flooding, or odour problems. Good maintenance scheduling reduces dangerous incidents, but it also has financial and human costs. In this paper, we propose a predictive model to support the management of maintenance routines and reduce cost expenditure. The solution is based on an architecture composed of an autoencoder and a feedforward neural network that classifies the future sediment deposition. The autoencoder serves as a feature reduction component that receives the physical properties of a sewer section and reduces them into a smaller number of variables, which compress the most important information, reducing data uncertainty. Afterwards, the feedforward neural network receives this compressed information together with rain and maintenance data, using all of them to classify the sediment deposition in four thresholds: more than 5, 10, 15, and 20% sediment deposition. We use the architecture to train four different classification models, with the best score from the 5% threshold, being 82% accuracy, 70% precision, 76% specificity, and 88% sensitivity. By combining the classifications obtained with the four models, the solution delivers a final indicator that categorizes the deposited sediment into clearly defined ranges.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.144","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Sediment accumulation in the sewer is a source of cascading problems if left unattended and untreated, causing pipe failures, blockages, flooding, or odour problems. Good maintenance scheduling reduces dangerous incidents, but it also has financial and human costs. In this paper, we propose a predictive model to support the management of maintenance routines and reduce cost expenditure. The solution is based on an architecture composed of an autoencoder and a feedforward neural network that classifies the future sediment deposition. The autoencoder serves as a feature reduction component that receives the physical properties of a sewer section and reduces them into a smaller number of variables, which compress the most important information, reducing data uncertainty. Afterwards, the feedforward neural network receives this compressed information together with rain and maintenance data, using all of them to classify the sediment deposition in four thresholds: more than 5, 10, 15, and 20% sediment deposition. We use the architecture to train four different classification models, with the best score from the 5% threshold, being 82% accuracy, 70% precision, 76% specificity, and 88% sensitivity. By combining the classifications obtained with the four models, the solution delivers a final indicator that categorizes the deposited sediment into clearly defined ranges.
使用两阶段机器学习解决方案预测下水道沉积物沉积情况
下水道中的沉积物如果不加注意和处理,就会引发一系列问题,导致管道故障、堵塞、洪水泛滥或臭味问题。良好的维护调度可减少危险事件的发生,但同时也会带来经济和人力成本。在本文中,我们提出了一个预测模型,以支持日常维护管理并降低成本支出。该解决方案基于一个由自动编码器和前馈神经网络组成的架构,可对未来沉积物进行分类。自动编码器作为特征还原组件,接收下水道断面的物理特性,并将其还原为较少数量的变量,从而压缩最重要的信息,减少数据的不确定性。然后,前馈神经网络接收这些压缩信息以及雨水和维护数据,并利用所有这些数据将沉积物沉积分为四个阈值:沉积物沉积超过 5%、10%、15% 和 20%。我们使用该架构训练了四种不同的分类模型,其中 5%阈值的模型得分最高,准确率为 82%,精确率为 70%,特异性为 76%,灵敏度为 88%。综合四个模型的分类结果,该解决方案提供了一个最终指标,可将沉积物划分为明确界定的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信