Analyzing the Time Evolution of a Particle by Decomposes the Initial State Confinement in 1D Well into the Lowest Eigenstates Energy

M. Oglah
{"title":"Analyzing the Time Evolution of a Particle by Decomposes the Initial State Confinement in 1D Well into the Lowest Eigenstates Energy","authors":"M. Oglah","doi":"10.55544/jrasb.3.2.17","DOIUrl":null,"url":null,"abstract":"In this work, we obtained the time evolution of the wave function of a limited quantum system (1D Box), hence getting a mathematical model to describe the system. By using programming computes, it performs a time evolution that decomposes the initial state into the 2,10, and 20 lowest energy eigenstates. Finally, by comparing numerical de-composition coefficients for the wave function to the analytical values, it found the number of knots increases directly versus the energy of the particle's quantum state. As a result, the mean bending given by the second derivative which is proportional to the kinetic energy operator should increase. We found there is a negligible mean and standard deviation of the energy in units of the ground state energy.","PeriodicalId":507877,"journal":{"name":"Journal for Research in Applied Sciences and Biotechnology","volume":"37 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Research in Applied Sciences and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55544/jrasb.3.2.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we obtained the time evolution of the wave function of a limited quantum system (1D Box), hence getting a mathematical model to describe the system. By using programming computes, it performs a time evolution that decomposes the initial state into the 2,10, and 20 lowest energy eigenstates. Finally, by comparing numerical de-composition coefficients for the wave function to the analytical values, it found the number of knots increases directly versus the energy of the particle's quantum state. As a result, the mean bending given by the second derivative which is proportional to the kinetic energy operator should increase. We found there is a negligible mean and standard deviation of the energy in units of the ground state energy.
通过将一维井中的初始态禁锢分解为最低特征态能量来分析粒子的时间演化
在这项工作中,我们获得了有限量子系统(1D Box)波函数的时间演化,从而得到了描述该系统的数学模型。通过编程计算,它执行了时间演化,将初始状态分解为 2、10 和 20 个能量最低的特征状态。最后,通过比较波函数的数值分解系数和分析值,它发现结的数量会随着粒子量子态能量的增加而直接增加。因此,与动能算子成正比的二阶导数给出的平均弯曲度应该增加。我们发现,以基态能量为单位的能量平均值和标准偏差可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信