Artificial intelligence predictability of moisture, fats and fatty acids composition of fish using low frequency Nuclear Magnetic Resonance (LF-NMR) relaxation

IF 2.701
Nasser Al-Habsi, Ruqaya Al-Julandani, Afrah Al-Hadhrami, Houda Al-Ruqaishi, Jamal Al-Sabahi, Zaher Al-Attabi, Mohammad Shafiur Rahman
{"title":"Artificial intelligence predictability of moisture, fats and fatty acids composition of fish using low frequency Nuclear Magnetic Resonance (LF-NMR) relaxation","authors":"Nasser Al-Habsi,&nbsp;Ruqaya Al-Julandani,&nbsp;Afrah Al-Hadhrami,&nbsp;Houda Al-Ruqaishi,&nbsp;Jamal Al-Sabahi,&nbsp;Zaher Al-Attabi,&nbsp;Mohammad Shafiur Rahman","doi":"10.1007/s13197-024-05977-3","DOIUrl":null,"url":null,"abstract":"<div><p>Moisture, fats and fatty acids of 14 pelagic and demersal fishes were measured by conventional chemical analysis to relate these with the proton relaxation using Low Frequency Nuclear Magnetic Resonance (LF-NMR). Artificial intelligence was used to assess the predictability of composition using six relaxation parameters of LF-NMR. Multiple linear regression showed significant prediction for moisture (W) (P &lt; 0.00001), total fat (F) (P &lt; 0.0001), ω-6 fatty acid (O6) (P &lt; 0.001), saturated fats (SF), fatty acids (FA), mono-unsaturated fatty acids (MU) and ω-3 fatty acid (O3) (P &lt; 0.01). However, the highest regression coefficient was observed for water (R<sup>2</sup>: 0.490) and the lowest was observed for SF (R<sup>2</sup>: 0.224). The low regression coefficients indicated strong non-linear relationships exited between LF-NMR parameters and composition. However, decision tree showed higher regression coefficients for all compositions considered in this study (R<sup>2</sup>:0.780–0.694). In addition, it provided simple decision rules for the prediction of composition. General Regression Neural Network provided the highest prediction capability (R<sup>2</sup>:0.847–1.000 for training and 0.506–0.924 for validation).</p></div>","PeriodicalId":632,"journal":{"name":"Journal of Food Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7010,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Technology","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s13197-024-05977-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moisture, fats and fatty acids of 14 pelagic and demersal fishes were measured by conventional chemical analysis to relate these with the proton relaxation using Low Frequency Nuclear Magnetic Resonance (LF-NMR). Artificial intelligence was used to assess the predictability of composition using six relaxation parameters of LF-NMR. Multiple linear regression showed significant prediction for moisture (W) (P < 0.00001), total fat (F) (P < 0.0001), ω-6 fatty acid (O6) (P < 0.001), saturated fats (SF), fatty acids (FA), mono-unsaturated fatty acids (MU) and ω-3 fatty acid (O3) (P < 0.01). However, the highest regression coefficient was observed for water (R2: 0.490) and the lowest was observed for SF (R2: 0.224). The low regression coefficients indicated strong non-linear relationships exited between LF-NMR parameters and composition. However, decision tree showed higher regression coefficients for all compositions considered in this study (R2:0.780–0.694). In addition, it provided simple decision rules for the prediction of composition. General Regression Neural Network provided the highest prediction capability (R2:0.847–1.000 for training and 0.506–0.924 for validation).

Abstract Image

利用低频核磁共振(LF-NMR)弛豫对鱼类的水分、脂肪和脂肪酸成分进行人工智能预测
通过传统化学分析测量了 14 种远洋和底栖鱼类的水分、脂肪和脂肪酸,并将其与低频核磁共振(LF-NMR)的质子弛豫联系起来。人工智能用于评估利用低频核磁共振的六个弛豫参数预测成分的可预测性。多元线性回归结果显示,水分 (W) (P < 0.00001)、总脂肪 (F) (P < 0.0001)、ω-6 脂肪酸 (O6) (P < 0.001)、饱和脂肪 (SF)、脂肪酸 (FA)、单不饱和脂肪酸 (MU) 和 ω-3 脂肪酸 (O3) (P < 0.01)具有显著的预测性。然而,水的回归系数最高(R2:0.490),而 SF 的回归系数最低(R2:0.224)。较低的回归系数表明 LF-NMR 参数与成分之间存在较强的非线性关系。然而,决策树对本研究中考虑的所有成分都显示出较高的回归系数(R2:0.780-0.694)。此外,决策树还为成分预测提供了简单的决策规则。一般回归神经网络的预测能力最高(训练 R2:0.847-1.000,验证 R2:0.506-0.924)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信