Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot

IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Debasmita Panda, Subhasis Karmakar, Manaswini Dash, Swagat Kumar Tripathy, Priya Das, Sagar Banerjee, Yiping Qi, Sanghamitra Samantaray, Pradipta Kumar Mohapatra, Mirza J. Baig, Kutubuddin A. Molla
{"title":"Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot","authors":"Debasmita Panda,&nbsp;Subhasis Karmakar,&nbsp;Manaswini Dash,&nbsp;Swagat Kumar Tripathy,&nbsp;Priya Das,&nbsp;Sagar Banerjee,&nbsp;Yiping Qi,&nbsp;Sanghamitra Samantaray,&nbsp;Pradipta Kumar Mohapatra,&nbsp;Mirza J. Baig,&nbsp;Kutubuddin A. Molla","doi":"10.1007/s42994-024-00139-7","DOIUrl":null,"url":null,"abstract":"<div><p>The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, <i>Arabidopsis,</i> and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, <i>Arabidopsis,</i> and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 2","pages":"151 - 168"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00139-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-024-00139-7","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, Arabidopsis, and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, Arabidopsis, and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications.

优化原生质体分离和转染断点:加速单子叶植物和双子叶植物中 Cas9/sgRNA 的裂解效率验证
CRISPR-Cas 基因组编辑工具以其简便、精确的能力修改目标基因组位点,正在给农业和基础生物学带来革命性的变化。软件预测的引导 RNA(gRNA)往往无法在目标基因座上诱导有效的裂解。由于染色质结构复杂,许多目标基因位点无法访问。目前,还没有合适的工具来预测基因组目标位点的结构及其可及性。因此,大量的时间和资源都花在了低效引导的编辑实验上。虽然体外裂解检测可以粗略评估 gRNA 的效率,但它在很大程度上排除了原生基因组环境的干扰。瞬时体内测试能正确评估编辑试剂在原生基因组环境中的裂解能力。在这里,我们开发了一种改良方案,利用蔗糖梯度从水稻、拟南芥和鹰嘴豆中高效分离原生质体,使用 PEG(聚乙二醇)转染,并验证 CRISPR-Cas9 的单导 RNA(sgRNA)裂解效率。我们优化了 PEG 介导的原生质体转染的各种参数,并利用我们的方案在单子叶植物和双子叶植物中实现了高转染效率。我们在水稻、拟南芥和鹰嘴豆原生质体中引入了含有 Cas9 和 sgRNA 的质粒载体。利用双 sgRNA,我们的 CRISPR 缺失策略可以通过简单的琼脂糖凝胶电泳直接检测基因组编辑是否成功。PCR 产物的 Sanger 测序证实了特定 sgRNA 的编辑效率。值得注意的是,我们证明分离出的原生质体可以保存 24/48 小时而几乎不丧失活力,这样就可以在分离和转染之间暂停一段时间。这种高效的原生质体分离和转染方案可以在进行稳定转化之前快速(少于 7 天)验证 sgRNA 的裂解效率。这种分离和转染方法还可用于快速验证编辑策略、评估各种编辑试剂、从转染的原生质体再生植物、基因表达研究、蛋白质定位和功能分析以及其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
2.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信