Gabrielė Žukauskaitė, I. Domarkienė, Tautvydas Rančelis, Ingrida Kavaliauskienė, Karolis Baronas, V. Kučinskas, L. Ambrozaitytė
{"title":"Putative protective genomic variation in the Lithuanian population","authors":"Gabrielė Žukauskaitė, I. Domarkienė, Tautvydas Rančelis, Ingrida Kavaliauskienė, Karolis Baronas, V. Kučinskas, L. Ambrozaitytė","doi":"10.1590/1678-4685-GMB-2023-0030","DOIUrl":null,"url":null,"abstract":"Abstract Genomic effect variants associated with survival and protection against complex diseases vary between populations due to microevolutionary processes. The aim of this study was to analyse diversity and distribution of effect variants in a context of potential positive selection. In total, 475 individuals of Lithuanian origin were genotyped using high-throughput scanning and/or sequencing technologies. Allele frequency analysis for the pre-selected effect variants was performed using the catalogue of single nucleotide polymorphisms. Comparison of the pre-selected effect variants with variants in primate species was carried out to ascertain which allele was derived and potentially of protective nature. Recent positive selection analysis was performed to verify this protective effect. Four variants having significantly different frequencies compared to European populations were identified while two other variants reached borderline significance. Effect variant in SLC30A8 gene may potentially protect against type 2 diabetes. The existing paradox of high rates of type 2 diabetes in the Lithuanian population and the relatively high frequencies of potentially protective genome variants against it indicate a lack of knowledge about the interactions between environmental factors, regulatory regions, and other genome variation. Identification of effect variants is a step towards better understanding of the microevolutionary processes, etiopathogenetic mechanisms, and personalised medicine.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Genomic effect variants associated with survival and protection against complex diseases vary between populations due to microevolutionary processes. The aim of this study was to analyse diversity and distribution of effect variants in a context of potential positive selection. In total, 475 individuals of Lithuanian origin were genotyped using high-throughput scanning and/or sequencing technologies. Allele frequency analysis for the pre-selected effect variants was performed using the catalogue of single nucleotide polymorphisms. Comparison of the pre-selected effect variants with variants in primate species was carried out to ascertain which allele was derived and potentially of protective nature. Recent positive selection analysis was performed to verify this protective effect. Four variants having significantly different frequencies compared to European populations were identified while two other variants reached borderline significance. Effect variant in SLC30A8 gene may potentially protect against type 2 diabetes. The existing paradox of high rates of type 2 diabetes in the Lithuanian population and the relatively high frequencies of potentially protective genome variants against it indicate a lack of knowledge about the interactions between environmental factors, regulatory regions, and other genome variation. Identification of effect variants is a step towards better understanding of the microevolutionary processes, etiopathogenetic mechanisms, and personalised medicine.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.