Jiawey D. Yi Loor, Albert Espinal, V. Sanchez Padilla
{"title":"Lorawan-Based RSSI-Trilateration Model for Node Location: A Simulation Integrating Flora and Omnet++","authors":"Jiawey D. Yi Loor, Albert Espinal, V. Sanchez Padilla","doi":"10.2478/ttj-2024-0017","DOIUrl":null,"url":null,"abstract":"\n This work presents the employing of LoRaWAN (Long Range Wide Area Network) for location applications through a network simulation to determine a mobile node position. We rely on FLoRa (Framework for LoRa) and OMNeT++ (Objective Modular Network Testbed in C++) simulator, which uses Python feature tools, following the calculation of node placement using the trilateration technique. Our method differs from others in that we calculate the FLoRa power loss and determine different simulation settings using the shadowing feature of the log-distance path loss model. We approached RSSI (Received Signal Strength Indicator) to measure the distance between the LoRa gateways and the nodes, establishing a link between these parameters. Our work aims to promote the integration of open-source tools for verifying signal intensity values based on node distance from gateways. We consider it useful for engineers in predicting signal behaviors according to topology and settings variations. During the experimentation, the network underwent different performances according to the transmission parameters considered during the simulation. This was critical when increasing the number of mobile nodes, leading to consuming computer capacity and resources. Through repetition of tests, we confirmed the lower intensity of the received signal as the node moves to farther positions, reaching consistent power indicators and positioning accuracy. Overall, the results show that LoRaWAN integrated with trilateration techniques can be practical in providing adequate performance for node positioning accuracy and long-distance communication with low power consumption.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2024-0017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the employing of LoRaWAN (Long Range Wide Area Network) for location applications through a network simulation to determine a mobile node position. We rely on FLoRa (Framework for LoRa) and OMNeT++ (Objective Modular Network Testbed in C++) simulator, which uses Python feature tools, following the calculation of node placement using the trilateration technique. Our method differs from others in that we calculate the FLoRa power loss and determine different simulation settings using the shadowing feature of the log-distance path loss model. We approached RSSI (Received Signal Strength Indicator) to measure the distance between the LoRa gateways and the nodes, establishing a link between these parameters. Our work aims to promote the integration of open-source tools for verifying signal intensity values based on node distance from gateways. We consider it useful for engineers in predicting signal behaviors according to topology and settings variations. During the experimentation, the network underwent different performances according to the transmission parameters considered during the simulation. This was critical when increasing the number of mobile nodes, leading to consuming computer capacity and resources. Through repetition of tests, we confirmed the lower intensity of the received signal as the node moves to farther positions, reaching consistent power indicators and positioning accuracy. Overall, the results show that LoRaWAN integrated with trilateration techniques can be practical in providing adequate performance for node positioning accuracy and long-distance communication with low power consumption.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.