Analysis of Pothole Detection Accuracy of Selected Object Detection Models Under Adverse Conditions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jaroslav Frnda, Srijita Bandyopadhyay, Michal Pavlicko, M. Durica, M. Savrasovs, Soumen Banerjee
{"title":"Analysis of Pothole Detection Accuracy of Selected Object Detection Models Under Adverse Conditions","authors":"Jaroslav Frnda, Srijita Bandyopadhyay, Michal Pavlicko, M. Durica, M. Savrasovs, Soumen Banerjee","doi":"10.2478/ttj-2024-0016","DOIUrl":null,"url":null,"abstract":"\n Potholes detection is an essential aspect of road safety and road infrastructure maintenance. Potholes, which are typically caused by a combination of heavy traffic and weather, are depressions or holes in the road surface that can cause damage to specific parts of a vehicle. Autonomous vehicles, in particular, must be capable of detecting and avoiding them. Hitting a deep or sharp-edged pothole at high speed can lead to loss of control or even an accident. This makes pothole detection all the more important. The accuracy of pothole detection systems installed in autonomous vehicles may be significantly impaired by adverse weather and bad light conditions. Therefore, the classification accuracy of selected well-known computer vision models for pothole detection under these specific conditions has been investigated. The results were then compared with state-of-the-art methods. Our findings showed that we outperformed many of them when used under adverse weather and low light situations. This paper presents valuable insights into the precision of various computer vision models for potholes detection. It may aid in selecting the optimal model for a specific application.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2024-0016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Potholes detection is an essential aspect of road safety and road infrastructure maintenance. Potholes, which are typically caused by a combination of heavy traffic and weather, are depressions or holes in the road surface that can cause damage to specific parts of a vehicle. Autonomous vehicles, in particular, must be capable of detecting and avoiding them. Hitting a deep or sharp-edged pothole at high speed can lead to loss of control or even an accident. This makes pothole detection all the more important. The accuracy of pothole detection systems installed in autonomous vehicles may be significantly impaired by adverse weather and bad light conditions. Therefore, the classification accuracy of selected well-known computer vision models for pothole detection under these specific conditions has been investigated. The results were then compared with state-of-the-art methods. Our findings showed that we outperformed many of them when used under adverse weather and low light situations. This paper presents valuable insights into the precision of various computer vision models for potholes detection. It may aid in selecting the optimal model for a specific application.
恶劣条件下选定物体检测模型的坑洞检测精度分析
坑洞检测是道路安全和道路基础设施维护的一个重要方面。坑洞通常是由交通繁忙和天气原因共同造成的,是路面上的凹陷或坑洞,会对车辆的特定部件造成损坏。自动驾驶汽车尤其必须能够探测并避开这些坑洞。高速行驶时撞击到深坑或边缘锋利的坑洞可能会导致失控,甚至发生事故。因此,坑洞探测就显得尤为重要。安装在自动驾驶汽车上的坑洞检测系统的准确性可能会受到恶劣天气和光线条件的严重影响。因此,我们研究了在这些特定条件下用于坑洞检测的某些著名计算机视觉模型的分类准确性。然后将结果与最先进的方法进行了比较。我们的研究结果表明,在恶劣天气和弱光条件下使用时,我们的表现优于其中的许多方法。本文对各种计算机视觉模型检测坑洞的精确度提出了宝贵的见解。它有助于为特定应用选择最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信