{"title":"Enhancing robotic grasping detection accuracy with the R2CNN algorithm and force-closure","authors":"Hsien-I Lin, M. Shodiq, Hong-Qi Chu","doi":"10.1115/1.4065311","DOIUrl":null,"url":null,"abstract":"\n This study aims to use an improved rotational region convolutional neural network (R2CNN) algorithm to detect the grasping bounding box for the robotic arm that reaches supermarket goods. This algorithm can calculate the final predicted grasping bounding box without any additional architecture, which greatly improves the speed of grasp inferences. In this study, we added the force-closure condition, so that the final grasping bounding box could achieve grasping stability in a physical sense. We experimentally demonstrated that the deep model treated object detection and grasping detection are the same tasks. We used transfer learning to improve the prediction accuracy of the grasping bounding box. In particular, the ResNet-101 network weights, which were originally used in object detection, were used to continue training with the Cornell dataset. In terms of grasping detection, we used the trained model weights that were originally used in object detection as the features of the to-be-grasped objects and fed them to the network for continuous training. For 2,828 test images, this method achieved nearly 98% accuracy and a speed of 14–17 frames per second.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to use an improved rotational region convolutional neural network (R2CNN) algorithm to detect the grasping bounding box for the robotic arm that reaches supermarket goods. This algorithm can calculate the final predicted grasping bounding box without any additional architecture, which greatly improves the speed of grasp inferences. In this study, we added the force-closure condition, so that the final grasping bounding box could achieve grasping stability in a physical sense. We experimentally demonstrated that the deep model treated object detection and grasping detection are the same tasks. We used transfer learning to improve the prediction accuracy of the grasping bounding box. In particular, the ResNet-101 network weights, which were originally used in object detection, were used to continue training with the Cornell dataset. In terms of grasping detection, we used the trained model weights that were originally used in object detection as the features of the to-be-grasped objects and fed them to the network for continuous training. For 2,828 test images, this method achieved nearly 98% accuracy and a speed of 14–17 frames per second.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping