Evaluating Reliability and Economics of EV Charging Configurations and Deep Reinforcement Learning in Robotics and Autonomy

Qeios Pub Date : 2024-04-16 DOI:10.32388/pqujel
Chandru Lin
{"title":"Evaluating Reliability and Economics of EV Charging Configurations and Deep Reinforcement Learning in Robotics and Autonomy","authors":"Chandru Lin","doi":"10.32388/pqujel","DOIUrl":null,"url":null,"abstract":"Growing EV popularity drives companies to focus on reliable charging station designs despite challenges in maintaining reliability. A proposed 36-ported design combines uniform and non-uniform port arrangements, tested with 50-350 kW systems. Failure rates are estimated using MILHDBK217F and MILHBK-338B standards, assessing port reliability and station success rates through binomial distribution and cost analysis. This design improves voltage stability and reduces maintenance costs through enhanced port reliability. In robotics and autonomous systems, Deep Reinforcement Learning (DRL) excels but faces challenges from unsafe policies leading to hazardous decisions. This study introduces a reliability assessment framework for DRL-controlled systems, using formal neural network analysis. A two-level verification approach evaluates safety locally using reachability tools and globally by aggregating local safety metrics across tasks. Experimental validation confirms the framework's effectiveness in enhancing RAS safety.\n","PeriodicalId":503632,"journal":{"name":"Qeios","volume":"6 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qeios","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32388/pqujel","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Growing EV popularity drives companies to focus on reliable charging station designs despite challenges in maintaining reliability. A proposed 36-ported design combines uniform and non-uniform port arrangements, tested with 50-350 kW systems. Failure rates are estimated using MILHDBK217F and MILHBK-338B standards, assessing port reliability and station success rates through binomial distribution and cost analysis. This design improves voltage stability and reduces maintenance costs through enhanced port reliability. In robotics and autonomous systems, Deep Reinforcement Learning (DRL) excels but faces challenges from unsafe policies leading to hazardous decisions. This study introduces a reliability assessment framework for DRL-controlled systems, using formal neural network analysis. A two-level verification approach evaluates safety locally using reachability tools and globally by aggregating local safety metrics across tasks. Experimental validation confirms the framework's effectiveness in enhancing RAS safety.
评估电动汽车充电配置的可靠性和经济性以及机器人学和自动驾驶中的深度强化学习
尽管在保持可靠性方面存在挑战,但电动汽车的日益普及促使企业关注可靠的充电站设计。拟议的 36 端口设计结合了均匀和非均匀端口布置,并使用 50-350 kW 系统进行了测试。采用 MILHDBK217F 和 MILHBK-338B 标准估算故障率,通过二项分布和成本分析评估端口可靠性和充电站成功率。这种设计提高了电压稳定性,并通过增强端口可靠性降低了维护成本。在机器人和自主系统中,深度强化学习(DRL)表现出色,但也面临着不安全政策导致危险决策的挑战。本研究利用形式化神经网络分析,为 DRL 控制系统引入了一个可靠性评估框架。一种两级验证方法使用可达性工具对局部安全性进行评估,并通过汇总跨任务的局部安全性指标对全局安全性进行评估。实验验证证实了该框架在提高 RAS 安全性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信