XiaoTong Pan, Hao Wang, Lei Liu, Xiang-Rong Chen, Hua Y. Geng
{"title":"First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure","authors":"XiaoTong Pan, Hao Wang, Lei Liu, Xiang-Rong Chen, Hua Y. Geng","doi":"10.1088/1674-1056/ad3ef6","DOIUrl":null,"url":null,"abstract":"\n Mn3TeO6 (MTO) has been experimentally found to adopt a P21/n structure under high pressure, which exhibits a significantly smaller band gap compared to the atmospheric R3 phase. In this study, we systematically investigate the magnetism, structural phase transition and electronic properties of MTO under high pressure through first-principles calculations. Both R3 and P21/n phases of MTO are antiferromagnetic at zero temperature. The R3 phase transforms to the P21/n phase at 7.58 GPa, accompanied by a considerable volume collapse of about 6.47%. Employing the accurate method that combines DFT+U and G0W0, the calculated band gap of R3 phase at zero pressure is very close to the experimental values, while that of the P21/n phase is significantly overestimated. The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P21/n phase instead of the Kubelka-Munk plot for the direct band gap. Furthermore, our study reveals that the transition from the R3 phase to the P21/n phase is accompanied by a slight reduction in the band gap.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"7 2","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad3ef6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mn3TeO6 (MTO) has been experimentally found to adopt a P21/n structure under high pressure, which exhibits a significantly smaller band gap compared to the atmospheric R3 phase. In this study, we systematically investigate the magnetism, structural phase transition and electronic properties of MTO under high pressure through first-principles calculations. Both R3 and P21/n phases of MTO are antiferromagnetic at zero temperature. The R3 phase transforms to the P21/n phase at 7.58 GPa, accompanied by a considerable volume collapse of about 6.47%. Employing the accurate method that combines DFT+U and G0W0, the calculated band gap of R3 phase at zero pressure is very close to the experimental values, while that of the P21/n phase is significantly overestimated. The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P21/n phase instead of the Kubelka-Munk plot for the direct band gap. Furthermore, our study reveals that the transition from the R3 phase to the P21/n phase is accompanied by a slight reduction in the band gap.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.