Application of big data and artificial intelligence inmental health prediction and intervention

Haoze Song
{"title":"Application of big data and artificial intelligence inmental health prediction and intervention","authors":"Haoze Song","doi":"10.61173/1qmnbs20","DOIUrl":null,"url":null,"abstract":"In this article, we delve into applying Convolutional Neural Networks (CNNs) and big data in predicting and intervening in mental health issues, emphasizing the potential for early detection and personalized treatment. By analyzing patterns in social media data, CNNs can identify indicators of mental health conditions, offering insights for tailored interventions. The discussion highlights the importance of addressing privacy, data security, and algorithmic bias to ensure ethical implementation. Future directions include enhancing predictive accuracy, expanding AI applications in therapy, fostering interdisciplinary collaborations, developing ethical frameworks, and engaging the public. Embracing these technologies in mental health care promises significant advancements but necessitates careful consideration of ethical imperatives to maximize benefits while safeguarding patient welfare.","PeriodicalId":486045,"journal":{"name":"Interdisciplinary Humanities and Communication Studies","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Humanities and Communication Studies","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.61173/1qmnbs20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we delve into applying Convolutional Neural Networks (CNNs) and big data in predicting and intervening in mental health issues, emphasizing the potential for early detection and personalized treatment. By analyzing patterns in social media data, CNNs can identify indicators of mental health conditions, offering insights for tailored interventions. The discussion highlights the importance of addressing privacy, data security, and algorithmic bias to ensure ethical implementation. Future directions include enhancing predictive accuracy, expanding AI applications in therapy, fostering interdisciplinary collaborations, developing ethical frameworks, and engaging the public. Embracing these technologies in mental health care promises significant advancements but necessitates careful consideration of ethical imperatives to maximize benefits while safeguarding patient welfare.
大数据和人工智能在心理健康预测和干预中的应用
在本文中,我们将深入探讨卷积神经网络(CNN)和大数据在预测和干预心理健康问题方面的应用,强调其在早期检测和个性化治疗方面的潜力。通过分析社交媒体数据中的模式,卷积神经网络可以识别精神健康状况的指标,为有针对性的干预提供洞察力。讨论强调了解决隐私、数据安全和算法偏差问题以确保道德实施的重要性。未来的方向包括提高预测准确性、扩大人工智能在治疗中的应用、促进跨学科合作、制定伦理框架以及吸引公众参与。将这些技术应用于心理健康护理有望取得重大进展,但必须认真考虑伦理要求,在保障患者福利的同时实现效益最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信