Xiting Zhang, Chenyi Fang, J. Paul Chen, Sui Zhang
{"title":"Surface engineering with ionic polymers on membranes for boron removal","authors":"Xiting Zhang, Chenyi Fang, J. Paul Chen, Sui Zhang","doi":"10.1007/s11705-024-2413-5","DOIUrl":null,"url":null,"abstract":"<div><p>Removal of boric acid from seawater and wastewater using reverse osmosis membrane technologies is imperative and yet remains inadequately addressed by current commercial membranes. Existing research efforts performed post-modification of reverse osmosis membranes to enhance boron rejection, which is usually accompanied by substantial sacrifice in water permeability. This study delves into the surface engineering of low-pressure reverse osmosis membranes, aiming to elevate boron removal efficiency while maintaining optimal salt rejection and water permeability. Membranes were modified by the self-polymerization and co-deposition of dopamine and polystyrene sulfonate at varying ratios and concentrations. The surfaces became smoother and more hydrophilic after modification. The optimum membrane exhibited a water permeability of 9.2 ± 0.1 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup>, NaCl rejection of 95.8% ± 0.3%, and boron rejection of 49.7% ± 0.1% and 99.6% ± 0.3% at neutral and alkaline pH, respectively. The water permeability is reduced by less than 15%, while the boron rejection is 3.7 times higher compared to the blank membrane. This research provides a promising avenue for enhancing boron removal in reverse osmosis membranes and addressing water quality concerns in the desalination process.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2413-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Removal of boric acid from seawater and wastewater using reverse osmosis membrane technologies is imperative and yet remains inadequately addressed by current commercial membranes. Existing research efforts performed post-modification of reverse osmosis membranes to enhance boron rejection, which is usually accompanied by substantial sacrifice in water permeability. This study delves into the surface engineering of low-pressure reverse osmosis membranes, aiming to elevate boron removal efficiency while maintaining optimal salt rejection and water permeability. Membranes were modified by the self-polymerization and co-deposition of dopamine and polystyrene sulfonate at varying ratios and concentrations. The surfaces became smoother and more hydrophilic after modification. The optimum membrane exhibited a water permeability of 9.2 ± 0.1 L·m−2·h−1·bar−1, NaCl rejection of 95.8% ± 0.3%, and boron rejection of 49.7% ± 0.1% and 99.6% ± 0.3% at neutral and alkaline pH, respectively. The water permeability is reduced by less than 15%, while the boron rejection is 3.7 times higher compared to the blank membrane. This research provides a promising avenue for enhancing boron removal in reverse osmosis membranes and addressing water quality concerns in the desalination process.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.