Biphase-to-monophase structure evolution of Na0.766+xLixNi0.33−xMn0.5Fe0.1Ti0.07O2 toward ultradurable Na-ion batteries

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-04-17 DOI:10.1002/cey2.565
Mengting Liu, Zhiwei Cheng, Xu Zhu, Haojie Dong, Tianran Yan, Liang Zhang, Lu Zheng, Hu-Rong Yao, Xian-Zuo Wang, Lianzheng Yu, Bing Xiao, Yao Xiao, Peng-Fei Wang
{"title":"Biphase-to-monophase structure evolution of Na0.766+xLixNi0.33−xMn0.5Fe0.1Ti0.07O2 toward ultradurable Na-ion batteries","authors":"Mengting Liu,&nbsp;Zhiwei Cheng,&nbsp;Xu Zhu,&nbsp;Haojie Dong,&nbsp;Tianran Yan,&nbsp;Liang Zhang,&nbsp;Lu Zheng,&nbsp;Hu-Rong Yao,&nbsp;Xian-Zuo Wang,&nbsp;Lianzheng Yu,&nbsp;Bing Xiao,&nbsp;Yao Xiao,&nbsp;Peng-Fei Wang","doi":"10.1002/cey2.565","DOIUrl":null,"url":null,"abstract":"<p>Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase. However, their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation, complicated electrochemical phase transition, and unsatisfactory cycling life. Herein, we propose an efficient structural evolution strategy from biphase to monophase of Na<sub>0.766+<i>x</i></sub>Li<sub><i>x</i></sub>Ni<sub>0.33−<i>x</i></sub>Mn<sub>0.5</sub>Fe<sub>0.1</sub>Ti<sub>0.07</sub>O<sub>2</sub> through Li<sup>+</sup> substitution. The role of Li<sup>+ </sup>substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal (TM) cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling. As a result, the thermodynamically robust O3-Na<sub>0.826</sub>Li<sub>0.06</sub>Ni<sub>0.27</sub>Mn<sub>0.5</sub>Fe<sub>0.1</sub>Ti<sub>0.07</sub>O<sub>2</sub> cathode delivers a high capacity of 139.4 mAh g<sup>−1</sup> at 0.1 C and shows prolonged cycling life at high rates, with capacity retention of 81.6% at 5 C over 500 cycles. This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials, contributing to the development of long-life sodium-ion batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.565","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.565","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase. However, their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation, complicated electrochemical phase transition, and unsatisfactory cycling life. Herein, we propose an efficient structural evolution strategy from biphase to monophase of Na0.766+xLixNi0.33−xMn0.5Fe0.1Ti0.07O2 through Li+ substitution. The role of Lisubstitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal (TM) cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling. As a result, the thermodynamically robust O3-Na0.826Li0.06Ni0.27Mn0.5Fe0.1Ti0.07O2 cathode delivers a high capacity of 139.4 mAh g−1 at 0.1 C and shows prolonged cycling life at high rates, with capacity retention of 81.6% at 5 C over 500 cycles. This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials, contributing to the development of long-life sodium-ion batteries.

Abstract Image

Abstract Image

从双相到单相的 Na0.766+xLixNi0.33-xMn0.5Fe0.1Ti0.07O2 结构演化,迈向超耐久镍离子电池
具有 O3/P2 双相晶体结构的层状复合氧化物材料通常兼具 O3 相的高容量和 P2 相的高工作电压。然而,由于热力学相调节困难、电化学相变复杂、循环寿命不理想等原因,这些材料的实际应用受到严重阻碍。在此,我们提出了一种通过 Li+ 替代实现 Na0.766+xLixNi0.33-xMn0.5Fe0.1Ti0.07O2 从双相到单相的高效结构演化策略。Li+ 取代的作用不仅是通过改变过渡金属阳离子的局部配位来简化不利相变,而且还能稳定阴极-电解质间相,防止过渡金属阳离子在电池循环过程中降解。因此,热力学上稳健的 O3-Na0.826Li0.06Ni0.27Mn0.5Fe0.1Ti0.07O2 阴极在 0.1 摄氏度时可提供 139.4 mAh g-1 的高容量,并在高速率下显示出更长的循环寿命,在 5 摄氏度下循环 500 次后容量保持率为 81.6%。这项研究在层状阴极材料的热力学结构演化和电化学之间建立了牢固的关系,有助于长寿命钠离子电池的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信