Cathode nanoarchitectonics with Na3VFe0.5Ti0.5(PO4)3: Overcoming the energy barriers of multielectron reactions for sodium-ion batteries

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-04-17 DOI:10.1002/cey2.551
Vaiyapuri Soundharrajan, Sungjin Kim, Subramanian Nithiananth, Muhammad H. Alfaruqi, JunJi Piao, Duong Tung Pham, Vinod Mathew, Sang A. Han, Jung Ho Kim, Jaekook Kim
{"title":"Cathode nanoarchitectonics with Na3VFe0.5Ti0.5(PO4)3: Overcoming the energy barriers of multielectron reactions for sodium-ion batteries","authors":"Vaiyapuri Soundharrajan,&nbsp;Sungjin Kim,&nbsp;Subramanian Nithiananth,&nbsp;Muhammad H. Alfaruqi,&nbsp;JunJi Piao,&nbsp;Duong Tung Pham,&nbsp;Vinod Mathew,&nbsp;Sang A. Han,&nbsp;Jung Ho Kim,&nbsp;Jaekook Kim","doi":"10.1002/cey2.551","DOIUrl":null,"url":null,"abstract":"<p>High electrochemical stability and safety make Na<sup>+</sup> superionic conductor (NASICON)-class cathodes highly desirable for Na-ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (&gt;1000 cycles) related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon-coated Na<sub>3</sub>VFe<sub>0.5</sub>Ti<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg<sup>−1</sup> and a high Na<sup>+</sup> insertion voltage of 3.0 V versus Na<sup>+</sup>/Na, this cathode can undergo a reversible single-phase solid-solution and two-phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g<sup>−1</sup>) for up to 10,000 cycles. This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials (Fe and Ti) with enriched Na<sup>+</sup>-storage properties in practical SIBs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High electrochemical stability and safety make Na+ superionic conductor (NASICON)-class cathodes highly desirable for Na-ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (>1000 cycles) related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon-coated Na3VFe0.5Ti0.5(PO4)3 (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg−1 and a high Na+ insertion voltage of 3.0 V versus Na+/Na, this cathode can undergo a reversible single-phase solid-solution and two-phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g−1) for up to 10,000 cycles. This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials (Fe and Ti) with enriched Na+-storage properties in practical SIBs.

Abstract Image

Abstract Image

采用 Na3VFe0.5Ti0.5(PO4)3 的阴极纳米结构:克服钠离子电池多电子反应的能量障碍
Na+ 超离子导体(NASICON)级阴极具有很高的电化学稳定性和安全性,因此非常适合用于钠离子电池(SIB)。然而,它们的实际容量有限,导致比能量较低。此外,由于活性材料-碳导电接触区的损失,低导电率加上长时间循环(大于 1000 次循环)后容量下降,导致速率性能和循环稳定性一般。对满足实际电化学要求的高比能量阴极的需求促使人们寻找新材料。在此,我们介绍了一种新型碳涂层 Na3VFe0.5Ti0.5(PO4)3(NVFTP/C)材料,它是 NASICON 系列 SIB 阴极材料中一种很有前途的候选材料。这种阴极具有 ∼457 Wh kg-1 的高比能量和 3.0 V 对 Na+/Na 的高 Na+ 插入电压,可在 28 C(1 C = 174.7 mAh g-1)温度下进行可逆的单相固溶和两相(脱)钠演化,循环次数可达 10,000 次。这项研究凸显了在实用 SIB 中利用由地球上丰富且无害的材料(铁和钛)制成的具有丰富 Na+ 储存特性的低成本高效阴极的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信