Ar(1s5) density in a co-axial argon plasma jet with N2-O2 shielding

Duarte Gonçalves, G. Bauville, P. Jeanney, M. Lino da Silva, Luis Alves, Stéphane Pasquiers, J. Santos Sousa
{"title":"Ar(1s5) density in a co-axial argon plasma jet with N2-O2 shielding","authors":"Duarte Gonçalves, G. Bauville, P. Jeanney, M. Lino da Silva, Luis Alves, Stéphane Pasquiers, J. Santos Sousa","doi":"10.1088/1361-6595/ad4054","DOIUrl":null,"url":null,"abstract":"\n Atmospheric-pressure microplasma jets (μAPPJs) are versatile sources of reactive species with diverse applications. However, understanding the plasma chemistry in these jets is challenging due to plasma-flow interactions in heterogeneous gas mixtures. Spatial metastable density profiles help to understand these physical and chemical mechanisms. This work focuses on controlling the shielding gas around a μAPPJ. We use a dielectric barrier discharge co-axial reactor where a co-flow shields the pure argon jet with different N2-O2 gas mixtures. A voltage pulse (4 kV, 1 μs, 20 kHz) generates a first discharge at the pulse’s rising edge and a second discharge at the falling edge. Tunable diode laser absorption spectroscopy measures the local Ar(1s5) density. A pure N2 (100%N2-0%O2) co-flow leads to less reproducible and lower peak Ar(1s5) density (5.8 × 1013 cm−3). Increasing the O2 admixture in the co-flow yields narrower Ar(1s5) absorbance profiles and increases the Ar(1s5) density (6.9 × 1013 - 9.1 × 1013 cm−3). The position of the peak density is closer to the reactor for higher O2 fractions. Absence of N2 results in comparable Ar(1s5) densities between the first and second discharges (maxima of 9.1 × 1013 and 9.3 × 1013 cm−3, respectively). Local Ar(1s5) density profiles from pure N2 to pure O2 shielding provide insights into physical and chemical processes. The spatially-resolved data may contribute to optimising argon μAPPJ reactors across the various applications and to validate numerical models.","PeriodicalId":508056,"journal":{"name":"Plasma Sources Science and Technology","volume":" 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad4054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric-pressure microplasma jets (μAPPJs) are versatile sources of reactive species with diverse applications. However, understanding the plasma chemistry in these jets is challenging due to plasma-flow interactions in heterogeneous gas mixtures. Spatial metastable density profiles help to understand these physical and chemical mechanisms. This work focuses on controlling the shielding gas around a μAPPJ. We use a dielectric barrier discharge co-axial reactor where a co-flow shields the pure argon jet with different N2-O2 gas mixtures. A voltage pulse (4 kV, 1 μs, 20 kHz) generates a first discharge at the pulse’s rising edge and a second discharge at the falling edge. Tunable diode laser absorption spectroscopy measures the local Ar(1s5) density. A pure N2 (100%N2-0%O2) co-flow leads to less reproducible and lower peak Ar(1s5) density (5.8 × 1013 cm−3). Increasing the O2 admixture in the co-flow yields narrower Ar(1s5) absorbance profiles and increases the Ar(1s5) density (6.9 × 1013 - 9.1 × 1013 cm−3). The position of the peak density is closer to the reactor for higher O2 fractions. Absence of N2 results in comparable Ar(1s5) densities between the first and second discharges (maxima of 9.1 × 1013 and 9.3 × 1013 cm−3, respectively). Local Ar(1s5) density profiles from pure N2 to pure O2 shielding provide insights into physical and chemical processes. The spatially-resolved data may contribute to optimising argon μAPPJ reactors across the various applications and to validate numerical models.
带有 N2-O2 屏蔽的同轴氩等离子体射流中的 Ar(1s5) 密度
大气压微等离子体射流(μAPPJs)是一种用途广泛的反应物源。然而,由于异质气体混合物中等离子体与气流的相互作用,了解这些射流中的等离子体化学性质具有挑战性。空间瞬变密度曲线有助于了解这些物理和化学机制。这项工作的重点是控制 μAPPJ 周围的屏蔽气体。我们使用了一个介质阻挡放电同轴反应器,在该反应器中,不同的 N2-O2 混合气体共流屏蔽了纯氩射流。电压脉冲(4 kV、1 μs、20 kHz)在脉冲上升沿产生第一次放电,在脉冲下降沿产生第二次放电。可调谐二极管激光吸收光谱测量局部 Ar(1s5) 密度。纯 N2(100%N2-0%O2)共流导致 Ar(1s5)密度(5.8 × 1013 cm-3)的重复性和峰值较低。增加共气流中的氧气掺量会使 Ar(1s5)吸光度曲线变窄,并增加 Ar(1s5)密度(6.9 × 1013 - 9.1 × 1013 cm-3)。O2 分数越高,密度峰的位置越靠近反应器。如果没有 N2,则第一次和第二次放电的 Ar(1s5) 密度相当(最大值分别为 9.1 × 1013 和 9.3 × 1013 cm-3)。从纯 N2 到纯 O2 屏蔽的局部 Ar(1s5) 密度剖面提供了对物理和化学过程的深入了解。空间分辨数据可能有助于优化氩μAPPJ 反应器的各种应用并验证数值模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信