{"title":"Is everything everywhere? A hands-on activity to engage undergraduates with key concepts in quantitative microbial biogeography.","authors":"Natalie Vandepol, Ashley Shade","doi":"10.1128/jmbe.00170-23","DOIUrl":null,"url":null,"abstract":"The ubiquity and ease with which microbial cells disperse over space is a key concept in microbiology, especially in microbial ecology. The phenomenon prompted Baas Becking's famous \"everything is everywhere\" statement that now acts as the null hypothesis in studies that test the dispersal limitation of microbial taxa. Despite covering the content in lectures, exam performance indicated that the concepts of dispersal and biogeography challenged undergraduate students in an upper-level Microbial Ecology course. Therefore, we iteratively designed a hands-on classroom activity to supplement the lecture content and reinforce fundamental microbial dispersal and biogeography concepts while also building quantitative reasoning and teamwork skills. In a class period soon after the lecture, the students formed three-to-five-person teams to engage in the activity, which included a hands-on dispersal simulation and worksheet to guide discussion. The simulation involved stepwise neutral immigration or emigration and then environmental selection on a random community of microbial taxa represented by craft poms. The students recorded the results at each step as microbial community data. A field guide was provided to identify the taxonomy based on the pom phenotype and a reference to each taxon's preferred environmental niches. The worksheet guided a reflection of student observations during the simulation. It also sharpened quantitative thinking by prompting the students to summarize and visualize their and other teams' microbial community data and then to compare the observed community distributions to the idealized expectation given only selection without dispersal. We found that the activity improved student performance on exam questions and general student satisfaction and comfort with the biogeography concepts. Activity instructions and a list of needed materials are included for instructors to reproduce for their classrooms.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00170-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
The ubiquity and ease with which microbial cells disperse over space is a key concept in microbiology, especially in microbial ecology. The phenomenon prompted Baas Becking's famous "everything is everywhere" statement that now acts as the null hypothesis in studies that test the dispersal limitation of microbial taxa. Despite covering the content in lectures, exam performance indicated that the concepts of dispersal and biogeography challenged undergraduate students in an upper-level Microbial Ecology course. Therefore, we iteratively designed a hands-on classroom activity to supplement the lecture content and reinforce fundamental microbial dispersal and biogeography concepts while also building quantitative reasoning and teamwork skills. In a class period soon after the lecture, the students formed three-to-five-person teams to engage in the activity, which included a hands-on dispersal simulation and worksheet to guide discussion. The simulation involved stepwise neutral immigration or emigration and then environmental selection on a random community of microbial taxa represented by craft poms. The students recorded the results at each step as microbial community data. A field guide was provided to identify the taxonomy based on the pom phenotype and a reference to each taxon's preferred environmental niches. The worksheet guided a reflection of student observations during the simulation. It also sharpened quantitative thinking by prompting the students to summarize and visualize their and other teams' microbial community data and then to compare the observed community distributions to the idealized expectation given only selection without dispersal. We found that the activity improved student performance on exam questions and general student satisfaction and comfort with the biogeography concepts. Activity instructions and a list of needed materials are included for instructors to reproduce for their classrooms.