{"title":"Super-polynomial accuracy of multidimensional randomized nets using the median-of-means","authors":"Zexin Pan, Art Owen","doi":"10.1090/mcom/3880","DOIUrl":null,"url":null,"abstract":"<p>We study approximate integration of a function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> based on taking the median of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> integral estimates derived from independently randomized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis t comma m comma s right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(t,m,s)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-nets in base <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is analytic over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the probability that any one randomized net’s estimate has an error larger than <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript minus c m squared slash s\">\n <mml:semantics>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>c</mml:mi>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">2^{-cm^2/s}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> times a quantity depending on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash StartRoot m EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msqrt>\n <mml:mi>m</mml:mi>\n </mml:msqrt>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(1/\\sqrt {m})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 3 log left-parenthesis 2 right-parenthesis slash pi squared almost-equals 0.21\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>c</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:mn>0.21</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c>3\\log (2)/\\pi ^2\\approx 0.21</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, the median of the distribution of these scrambled nets has an error that is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n Superscript minus c log left-parenthesis n right-parenthesis slash s Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(n^{-c\\log (n)/s})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 2 Superscript m\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mi>m</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=2^m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> function evaluations. The sample median of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent draws attains this rate too, so long as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r slash m squared\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r/m^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bounded away from zero as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\to \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent draws.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We study approximate integration of a function ff over [0,1]s[0,1]^s based on taking the median of 2r−12r-1 integral estimates derived from independently randomized (t,m,s)(t,m,s)-nets in base 22. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If ff is analytic over [0,1]s[0,1]^s, then the probability that any one randomized net’s estimate has an error larger than 2−cm2/s2^{-cm^2/s} times a quantity depending on ff is O(1/m)O(1/\sqrt {m}) for any c>3log(2)/π2≈0.21c>3\log (2)/\pi ^2\approx 0.21. As a result, the median of the distribution of these scrambled nets has an error that is O(n−clog(n)/s)O(n^{-c\log (n)/s}) for n=2mn=2^m function evaluations. The sample median of 2r−12r-1 independent draws attains this rate too, so long as r/m2r/m^2 is bounded away from zero as m→∞m\to \infty. We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of 2r−12r-1 independent draws.
我们研究了函数 f f 在 [ 0 , 1 ] s [0,1]^s 上的近似积分,其基础是取 2 r - 1 2r-1 积分估计值的中值,这些估计值来自以 2 2 为底的独立随机 ( t , m , s ) (t,m,s) 网。这些网络是通过马托塞克随机线性扰乱和随机数字移位随机化的。如果 f f 在 [ 0 , 1 ] s [0,1]^s 上是解析的,那么对于任意 c > 3 log ( 2 ) /π 2 ≈ 0.21 c>3\log (2)/\pi ^2\approx 0.21,任何一个随机网的估计值误差大于 2 - c m 2 / s 2^{-cm^2/s} 倍的概率是 O ( 1 / m ) O(1/\sqrt {m})。因此,这些乱码网分布的中值误差为 O ( n - c log ( n ) / s ) O(n^{-c\log (n)/s}) for n = 2 m n=2^m function evaluations.只要 r / m 2 r/m^2 在 m → ∞ m\to \infty 时离零有界,2 r - 1 2r-1 独立抽样的样本中值也能达到这个比率。我们包括有限精度估计的结果,以及取 2 r - 1 2r-1 独立抽样的平均值的一些非渐近比较。
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.