Super-polynomial accuracy of multidimensional randomized nets using the median-of-means

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zexin Pan, Art Owen
{"title":"Super-polynomial accuracy of multidimensional randomized nets using the median-of-means","authors":"Zexin Pan, Art Owen","doi":"10.1090/mcom/3880","DOIUrl":null,"url":null,"abstract":"<p>We study approximate integration of a function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> based on taking the median of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> integral estimates derived from independently randomized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis t comma m comma s right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>s</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(t,m,s)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-nets in base <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The nets are randomized by Matousek’s random linear scramble with a random digital shift. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is analytic over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma 1 right-bracket Superscript s\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mi>s</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0,1]^s</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the probability that any one randomized net’s estimate has an error larger than <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript minus c m squared slash s\">\n <mml:semantics>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>c</mml:mi>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">2^{-cm^2/s}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> times a quantity depending on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash StartRoot m EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msqrt>\n <mml:mi>m</mml:mi>\n </mml:msqrt>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(1/\\sqrt {m})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 3 log left-parenthesis 2 right-parenthesis slash pi squared almost-equals 0.21\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>c</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mi>log</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo>≈<!-- ≈ --></mml:mo>\n <mml:mn>0.21</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c>3\\log (2)/\\pi ^2\\approx 0.21</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a result, the median of the distribution of these scrambled nets has an error that is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n Superscript minus c log left-parenthesis n right-parenthesis slash s Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>c</mml:mi>\n <mml:mi>log</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>s</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(n^{-c\\log (n)/s})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 2 Superscript m\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mi>m</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=2^m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> function evaluations. The sample median of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent draws attains this rate too, so long as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r slash m squared\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msup>\n <mml:mi>m</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">r/m^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bounded away from zero as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\to \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 r minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>r</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2r-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> independent draws.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study approximate integration of a function f f over [ 0 , 1 ] s [0,1]^s based on taking the median of 2 r 1 2r-1 integral estimates derived from independently randomized ( t , m , s ) (t,m,s) -nets in base 2 2 . The nets are randomized by Matousek’s random linear scramble with a random digital shift. If f f is analytic over [ 0 , 1 ] s [0,1]^s , then the probability that any one randomized net’s estimate has an error larger than 2 c m 2 / s 2^{-cm^2/s} times a quantity depending on f f is O ( 1 / m ) O(1/\sqrt {m}) for any c > 3 log ( 2 ) / π 2 0.21 c>3\log (2)/\pi ^2\approx 0.21 . As a result, the median of the distribution of these scrambled nets has an error that is O ( n c log ( n ) / s ) O(n^{-c\log (n)/s}) for n = 2 m n=2^m function evaluations. The sample median of 2 r 1 2r-1 independent draws attains this rate too, so long as r / m 2 r/m^2 is bounded away from zero as m m\to \infty . We include results for finite precision estimates and some nonasymptotic comparisons to taking the mean of 2 r 1 2r-1 independent draws.

使用均值中值的多维随机网的超多项式精度
我们研究了函数 f f 在 [ 0 , 1 ] s [0,1]^s 上的近似积分,其基础是取 2 r - 1 2r-1 积分估计值的中值,这些估计值来自以 2 2 为底的独立随机 ( t , m , s ) (t,m,s) 网。这些网络是通过马托塞克随机线性扰乱和随机数字移位随机化的。如果 f f 在 [ 0 , 1 ] s [0,1]^s 上是解析的,那么对于任意 c > 3 log ( 2 ) /π 2 ≈ 0.21 c>3\log (2)/\pi ^2\approx 0.21,任何一个随机网的估计值误差大于 2 - c m 2 / s 2^{-cm^2/s} 倍的概率是 O ( 1 / m ) O(1/\sqrt {m})。因此,这些乱码网分布的中值误差为 O ( n - c log ( n ) / s ) O(n^{-c\log (n)/s}) for n = 2 m n=2^m function evaluations.只要 r / m 2 r/m^2 在 m → ∞ m\to \infty 时离零有界,2 r - 1 2r-1 独立抽样的样本中值也能达到这个比率。我们包括有限精度估计的结果,以及取 2 r - 1 2r-1 独立抽样的平均值的一些非渐近比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信