Evaluation of thermal contact resistance of molten resin–mold interface during high-thermal-conductivity polyphenylene sulfide filling in injection molding
Akifumi Kurita, Yohei Yoshimura, Makoto Suzuki, H. Yokoi, Y. Kajihara
{"title":"Evaluation of thermal contact resistance of molten resin–mold interface during high-thermal-conductivity polyphenylene sulfide filling in injection molding","authors":"Akifumi Kurita, Yohei Yoshimura, Makoto Suzuki, H. Yokoi, Y. Kajihara","doi":"10.1515/ipp-2023-4448","DOIUrl":null,"url":null,"abstract":"\n High-thermal-conductivity polyphenylene sulfide (PPS) has both mechanical and heat dissipation properties, and its low weight and fuel efficiency make it a suitable replacement for metals in automobiles. However, this resin often causes filling defects in the injection molding process. This is due to the higher thermal conductivity, which causes the molten resin to solidify more quickly during the filling process. Therefore, it is important to predict the cooling and filling behaviors of the resin accurately using computer-aided engineering (CAE). Currently, many commercial software programs use thermal contact resistance (TCR) as the thermal boundary condition between the mold and resin. However, there is no established method to accurately evaluate TCR during filling with high spatial resolution and response, and the accuracy of CAE cannot be maintained. Therefore, we used thermography and a prismatic glass insert mold to thermally visualize and analyze the filling process of this resin. Consequently, we succeeded in evaluating TCR values with high spatial resolution and response. The obtained TCR values varied depending on the flow state and pressure. To further validate the obtained TCR values, we compared “the visualization results of real flow conditions” and “the flow prediction results of CAE considering the obtained TCR values”.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 45","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-thermal-conductivity polyphenylene sulfide (PPS) has both mechanical and heat dissipation properties, and its low weight and fuel efficiency make it a suitable replacement for metals in automobiles. However, this resin often causes filling defects in the injection molding process. This is due to the higher thermal conductivity, which causes the molten resin to solidify more quickly during the filling process. Therefore, it is important to predict the cooling and filling behaviors of the resin accurately using computer-aided engineering (CAE). Currently, many commercial software programs use thermal contact resistance (TCR) as the thermal boundary condition between the mold and resin. However, there is no established method to accurately evaluate TCR during filling with high spatial resolution and response, and the accuracy of CAE cannot be maintained. Therefore, we used thermography and a prismatic glass insert mold to thermally visualize and analyze the filling process of this resin. Consequently, we succeeded in evaluating TCR values with high spatial resolution and response. The obtained TCR values varied depending on the flow state and pressure. To further validate the obtained TCR values, we compared “the visualization results of real flow conditions” and “the flow prediction results of CAE considering the obtained TCR values”.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.