M. I. Gonzalez, M. González-Arjona, L. Cussó, Miguel Ángel Morcillo, J. Aguilera-Correa, Jaime Esteban, M. Kestler, Daniel Calle, Carlos Cerón, Marta Cortes-Canteli, Patricia Muñoz, Emilio Bouza, Manuel Desco, Beatriz Salinas
{"title":"In Vivo Detection of Staphylococcus aureus Infections Using Radiolabeled Antibodies Specific for Bacterial Toxins","authors":"M. I. Gonzalez, M. González-Arjona, L. Cussó, Miguel Ángel Morcillo, J. Aguilera-Correa, Jaime Esteban, M. Kestler, Daniel Calle, Carlos Cerón, Marta Cortes-Canteli, Patricia Muñoz, Emilio Bouza, Manuel Desco, Beatriz Salinas","doi":"10.1155/2024/3655327","DOIUrl":null,"url":null,"abstract":"Purpose The Gram-positive Staphylococcus aureus bacterium is one of the leading causes of infection in humans. The lack of specific noninvasive techniques for diagnosis of staphylococcal infection together with the severity of its associated complications support the need for new specific and selective diagnostic tools. This work presents the successful synthesis of an immunotracer that targets the α-toxin released by S. aureus. Methods [89Zr]Zr-DFO-ToxAb was synthesized based on radiolabeling an anti-α-toxin antibody with zirconium-89. The physicochemical characterization of the immunotracer was performed by high-performance liquid chromatography (HPLC), radio-thin layer chromatography (radio-TLC), and electrophoretic analysis. Its diagnostic ability was evaluated in vivo by positron emission tomography/computed tomography (PET/CT) imaging in an animal model of local infection-inflammation (active S. aureus vs. heat-killed S. aureus) and infective osteoarthritis. Results Chemical characterization of the tracer established the high radiochemical yield and purity of the tracer while maintaining antibody integrity. In vivo PET/CT image confirmed the ability of the tracer to detect active foci of S. aureus. Those results were supported by ex vivo biodistribution studies, autoradiography, and histology, which confirmed the ability of [89Zr]Zr-DFO-ToxAb to detect staphylococcal infectious foci, avoiding false-positives derived from inflammatory processes. Conclusions We have developed an immuno-PET tracer capable of detecting S. aureus infections based on a radiolabeled antibody specific for the staphylococcal alpha toxins. The in vivo assessment of [89Zr]Zr-DFO-ToxAb confirmed its ability to selectively detect staphylococcal infectious foci, allowing us to discern between infectious and inflammatory processes.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3655327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose The Gram-positive Staphylococcus aureus bacterium is one of the leading causes of infection in humans. The lack of specific noninvasive techniques for diagnosis of staphylococcal infection together with the severity of its associated complications support the need for new specific and selective diagnostic tools. This work presents the successful synthesis of an immunotracer that targets the α-toxin released by S. aureus. Methods [89Zr]Zr-DFO-ToxAb was synthesized based on radiolabeling an anti-α-toxin antibody with zirconium-89. The physicochemical characterization of the immunotracer was performed by high-performance liquid chromatography (HPLC), radio-thin layer chromatography (radio-TLC), and electrophoretic analysis. Its diagnostic ability was evaluated in vivo by positron emission tomography/computed tomography (PET/CT) imaging in an animal model of local infection-inflammation (active S. aureus vs. heat-killed S. aureus) and infective osteoarthritis. Results Chemical characterization of the tracer established the high radiochemical yield and purity of the tracer while maintaining antibody integrity. In vivo PET/CT image confirmed the ability of the tracer to detect active foci of S. aureus. Those results were supported by ex vivo biodistribution studies, autoradiography, and histology, which confirmed the ability of [89Zr]Zr-DFO-ToxAb to detect staphylococcal infectious foci, avoiding false-positives derived from inflammatory processes. Conclusions We have developed an immuno-PET tracer capable of detecting S. aureus infections based on a radiolabeled antibody specific for the staphylococcal alpha toxins. The in vivo assessment of [89Zr]Zr-DFO-ToxAb confirmed its ability to selectively detect staphylococcal infectious foci, allowing us to discern between infectious and inflammatory processes.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics