{"title":"CT is rare in IDH-mutant gliomas compared to IDH-wildtype glioblastomas whereas whole-genome duplication is equally frequent in both tumor types","authors":"Baptiste Sourty, Laëtitia Basset, Alix Fontaine, Emmanuel Garcion, Audrey Rousseau","doi":"10.1093/noajnl/vdae059","DOIUrl":null,"url":null,"abstract":"\n \n \n Adult-type diffuse gliomas comprise IDH-mutant astrocytomas, IDH-mutant 1p/19q codeleted oligodendrogliomas (ODG), and IDH-wildtype glioblastomas (GBM). GBM display genome instability, which may result from two genetic events leading to massive chromosome alterations: chromothripsis (CT) and whole-genome duplication (WGD). These events are scarcely described in IDH-mutant gliomas. The better prognosis of the latter may be related to their genome stability compared to GBM.\n \n \n \n Pangenomic profiles of 297 adult diffuse gliomas were analyzed at initial diagnosis using SNP arrays, including 192 GBM and 105 IDH-mutant gliomas (61 astrocytomas and 44 ODG). Tumor ploidy was assessed with Genome Alteration Print and CT events with CTLPScanner and through manual screening. Survival data were compared using the Kaplan-Meier method.\n \n \n \n At initial diagnosis, 37 GBM (18.7%) displayed CT versus 5 IDH-mutant gliomas (4.7%) (p = 0.0008), the latter were all high-grade (grade 3 or 4) astrocytomas. WGD was detected at initial diagnosis in 18 GBM (9.3%) and 9 IDH-mutant gliomas (5 astrocytomas and 4 oligodendrogliomas, either low- or high-grade) (8.5%). Neither CT nor WGD was associated with overall survival in GBM or in IDH-mutant gliomas.\n \n \n \n CT is less frequent in IDH-mutant gliomas compared to GBM. The absence of CT in ODG and grade 2 astrocytomas might, in part, explain their genome stability and better prognosis, while CT might underlie aggressive biological behavior in some high-grade astrocytomas. WGD is a rare and early event occurring equally in IDH-mutant gliomas and GBM.\n","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae059","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Adult-type diffuse gliomas comprise IDH-mutant astrocytomas, IDH-mutant 1p/19q codeleted oligodendrogliomas (ODG), and IDH-wildtype glioblastomas (GBM). GBM display genome instability, which may result from two genetic events leading to massive chromosome alterations: chromothripsis (CT) and whole-genome duplication (WGD). These events are scarcely described in IDH-mutant gliomas. The better prognosis of the latter may be related to their genome stability compared to GBM.
Pangenomic profiles of 297 adult diffuse gliomas were analyzed at initial diagnosis using SNP arrays, including 192 GBM and 105 IDH-mutant gliomas (61 astrocytomas and 44 ODG). Tumor ploidy was assessed with Genome Alteration Print and CT events with CTLPScanner and through manual screening. Survival data were compared using the Kaplan-Meier method.
At initial diagnosis, 37 GBM (18.7%) displayed CT versus 5 IDH-mutant gliomas (4.7%) (p = 0.0008), the latter were all high-grade (grade 3 or 4) astrocytomas. WGD was detected at initial diagnosis in 18 GBM (9.3%) and 9 IDH-mutant gliomas (5 astrocytomas and 4 oligodendrogliomas, either low- or high-grade) (8.5%). Neither CT nor WGD was associated with overall survival in GBM or in IDH-mutant gliomas.
CT is less frequent in IDH-mutant gliomas compared to GBM. The absence of CT in ODG and grade 2 astrocytomas might, in part, explain their genome stability and better prognosis, while CT might underlie aggressive biological behavior in some high-grade astrocytomas. WGD is a rare and early event occurring equally in IDH-mutant gliomas and GBM.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico