{"title":"Gate-field control of valley polarization in valleytronics","authors":"Ting-Ting Zhang, Yilin Han, Run-Wu Zhang, Zhi-Ming Yu","doi":"10.1088/1674-1056/ad401a","DOIUrl":null,"url":null,"abstract":"\n Valleytronics materials are a kind of special semiconductors, which can host multiple symmetryconnected and well-separated electron or hole pockets in the Brillouin zone when the system is slightly n or p doped. Since the low-energy particles residing in these pockets generally are not easily scattered to each other by small perturbations, they are endowed with an additional valley degree of freedom. Analogous to spin, the valley freedom can be used to process information, leading to the concept of valleytronics. The prerequisite for valleytronics is the generation of valley polarization. Thus, a focus in this field is achieving electric generation of valley polarization, especially the static generation by the gate electric field alone. In this work, we briefly review the latest progress in this research direction, focusing on the concepts of the couplings between valley and layer, i.e. the valley-layer coupling which permits the gate-field control of the valley polarization, the couplings between valley, layer, and spin in magnetic systems, the physical properties, the novel designing schemes for electronics devices, and the material realizations of the gate-controlled valleytronics materials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 6","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad401a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Valleytronics materials are a kind of special semiconductors, which can host multiple symmetryconnected and well-separated electron or hole pockets in the Brillouin zone when the system is slightly n or p doped. Since the low-energy particles residing in these pockets generally are not easily scattered to each other by small perturbations, they are endowed with an additional valley degree of freedom. Analogous to spin, the valley freedom can be used to process information, leading to the concept of valleytronics. The prerequisite for valleytronics is the generation of valley polarization. Thus, a focus in this field is achieving electric generation of valley polarization, especially the static generation by the gate electric field alone. In this work, we briefly review the latest progress in this research direction, focusing on the concepts of the couplings between valley and layer, i.e. the valley-layer coupling which permits the gate-field control of the valley polarization, the couplings between valley, layer, and spin in magnetic systems, the physical properties, the novel designing schemes for electronics devices, and the material realizations of the gate-controlled valleytronics materials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.