{"title":"Multiply by 37 (or Divide by 0.027): A Surprisingly Accurate Rule of Thumb for Converting Effect Sizes From Standard Deviations to Percentile Points","authors":"Paul von Hippel","doi":"10.3102/01623737241239677","DOIUrl":null,"url":null,"abstract":"Educational researchers often report effect sizes in standard deviation units (SD), but SD effects are hard to interpret. Effects are easier to interpret in percentile points, but converting SDs to percentile points involves a calculation that is not transparent to educational stakeholders. We show that if the outcome variable is normally distributed, we can approximate the percentile-point effect simply by multiplying the SD effect by 37 (or, equivalently, dividing the SD effect by 0.027). For students in the middle three-fifths of a normal distribution, this rule of thumb is always accurate to within 1.6 percentile points for effect sizes of up to 0.8 SD. Two examples show that the rule can be just as accurate for empirical effects from real studies. Applying the rule to empirical benchmarks, we find that the least effective third of educational interventions raise scores by 0 to 2 percentile points; the middle third raise scores by 2 to 7 percentile points; and the most effective third raise scores by more than 7 percentile points.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.3102/01623737241239677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Educational researchers often report effect sizes in standard deviation units (SD), but SD effects are hard to interpret. Effects are easier to interpret in percentile points, but converting SDs to percentile points involves a calculation that is not transparent to educational stakeholders. We show that if the outcome variable is normally distributed, we can approximate the percentile-point effect simply by multiplying the SD effect by 37 (or, equivalently, dividing the SD effect by 0.027). For students in the middle three-fifths of a normal distribution, this rule of thumb is always accurate to within 1.6 percentile points for effect sizes of up to 0.8 SD. Two examples show that the rule can be just as accurate for empirical effects from real studies. Applying the rule to empirical benchmarks, we find that the least effective third of educational interventions raise scores by 0 to 2 percentile points; the middle third raise scores by 2 to 7 percentile points; and the most effective third raise scores by more than 7 percentile points.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.