3D Poissonian image deblurring via patch-based tensor logarithmic Schatten-p minimization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jian Lu, Lin Huang, Xiaoxia Liu, Ning Xie, Qingtang Jiang, Yuru Zou
{"title":"3D Poissonian image deblurring via patch-based tensor logarithmic Schatten-p minimization","authors":"Jian Lu, Lin Huang, Xiaoxia Liu, Ning Xie, Qingtang Jiang, Yuru Zou","doi":"10.1088/1361-6420/ad40c9","DOIUrl":null,"url":null,"abstract":"\n In medical and biological image processing, multi-dimensional images are often corrupted by blur and Poisson noise. In this paper, we first propose a new tensor logarithmic Schatten-$p$ (t-log-$S_p$) low-rank measure and a tensor iteratively reweighted Schatten-$p$ minimization (t-IRSpM) algorithm for minimizing such measure. Furthermore, we adopt this low-rank measure to regularize the non-local tensors formed by similar 3D image patches and develop a patch-based non-local low-rank model. The data fidelity term of the model characterizes the Poisson noise distribution and blur operator. The optimization model is further solved by an alternating minimization technique combined with variable splitting. Experimental results tested on 3D fluorescence microscope images show that the proposed patch-based tensor logarithmic Schatten-$p$ minimization (TLSpM) method outperforms state-of-the-art methods in terms of image evaluation metrics and visual quality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad40c9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In medical and biological image processing, multi-dimensional images are often corrupted by blur and Poisson noise. In this paper, we first propose a new tensor logarithmic Schatten-$p$ (t-log-$S_p$) low-rank measure and a tensor iteratively reweighted Schatten-$p$ minimization (t-IRSpM) algorithm for minimizing such measure. Furthermore, we adopt this low-rank measure to regularize the non-local tensors formed by similar 3D image patches and develop a patch-based non-local low-rank model. The data fidelity term of the model characterizes the Poisson noise distribution and blur operator. The optimization model is further solved by an alternating minimization technique combined with variable splitting. Experimental results tested on 3D fluorescence microscope images show that the proposed patch-based tensor logarithmic Schatten-$p$ minimization (TLSpM) method outperforms state-of-the-art methods in terms of image evaluation metrics and visual quality.
通过基于补丁的张量对数 Schatten-p 最小化实现三维泊松图像去模糊
在医学和生物图像处理中,多维图像经常受到模糊和泊松噪声的破坏。在本文中,我们首先提出了一种新的张量对数 Schatten-$p$ (t-log-$S_p$)低秩度量和一种张量迭代加权 Schatten-$p$ 最小化(t-IRSpM)算法来最小化这种度量。此外,我们还采用这种低秩度量对相似三维图像斑块形成的非局部张量进行正则化,并建立了基于斑块的非局部低秩模型。该模型的数据保真项描述了泊松噪声分布和模糊算子。该优化模型通过交替最小化技术与变量分割相结合进一步求解。在三维荧光显微镜图像上测试的实验结果表明,所提出的基于补丁的张量对数沙腾-$p$最小化(TLSpM)方法在图像评价指标和视觉质量方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信