Optimization of Obstructive Sleep Apnea Management: Novel Decision Support via Unsupervised Machine Learning

IF 3.4 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Arthur Pinheiro de Araújo Costa, A. Terra, Claudio de Souza Rocha Junior, Igor Pinheiro de Araújo Costa, M. Moreira, Marcos dos Santos, C. F. Gomes, Antonio Sergio da Silva
{"title":"Optimization of Obstructive Sleep Apnea Management: Novel Decision Support via Unsupervised Machine Learning","authors":"Arthur Pinheiro de Araújo Costa, A. Terra, Claudio de Souza Rocha Junior, Igor Pinheiro de Araújo Costa, M. Moreira, Marcos dos Santos, C. F. Gomes, Antonio Sergio da Silva","doi":"10.3390/informatics11020022","DOIUrl":null,"url":null,"abstract":"This study addresses Obstructive Sleep Apnea (OSA), which impacts around 936 million adults globally. The research introduces a novel decision support method named Communalities on Ranking and Objective Weights Method (CROWM), which employs principal component analysis (PCA), unsupervised Machine Learning techniques, and Multicriteria Decision Analysis (MCDA) to calculate performance criteria weights of Continuous Positive Airway Pressure (CPAP—key in managing OSA) and to evaluate these devices. Uniquely, the CROWM incorporates non-beneficial criteria in PCA and employs communalities to accurately represent the performance evaluation of alternatives within each resulting principal factor, allowing for a more accurate and robust analysis of alternatives and variables. This article aims to employ CROWM to evaluate CPAP for effectiveness in combating OSA, considering six performance criteria: resources, warranty, noise, weight, cost, and maintenance. Validated by established tests and sensitivity analysis against traditional methods, CROWM proves its consistency, efficiency, and superiority in decision-making support. This method is poised to influence assertive decision-making significantly, aiding healthcare professionals, researchers, and patients in selecting optimal CPAP solutions, thereby advancing patient care in an interdisciplinary research context.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics11020022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses Obstructive Sleep Apnea (OSA), which impacts around 936 million adults globally. The research introduces a novel decision support method named Communalities on Ranking and Objective Weights Method (CROWM), which employs principal component analysis (PCA), unsupervised Machine Learning techniques, and Multicriteria Decision Analysis (MCDA) to calculate performance criteria weights of Continuous Positive Airway Pressure (CPAP—key in managing OSA) and to evaluate these devices. Uniquely, the CROWM incorporates non-beneficial criteria in PCA and employs communalities to accurately represent the performance evaluation of alternatives within each resulting principal factor, allowing for a more accurate and robust analysis of alternatives and variables. This article aims to employ CROWM to evaluate CPAP for effectiveness in combating OSA, considering six performance criteria: resources, warranty, noise, weight, cost, and maintenance. Validated by established tests and sensitivity analysis against traditional methods, CROWM proves its consistency, efficiency, and superiority in decision-making support. This method is poised to influence assertive decision-making significantly, aiding healthcare professionals, researchers, and patients in selecting optimal CPAP solutions, thereby advancing patient care in an interdisciplinary research context.
优化阻塞性睡眠呼吸暂停管理:通过无监督机器学习提供新颖的决策支持
这项研究针对的是影响全球约 9.36 亿成年人的阻塞性睡眠呼吸暂停症(OSA)。该方法采用主成分分析(PCA)、无监督机器学习技术和多标准决策分析(MCDA)来计算持续正压通气(CPAP--治疗 OSA 的关键)的性能标准权重,并对这些设备进行评估。与众不同的是,CROWM 在 PCA 中纳入了非效益标准,并采用共性来准确表示每个主因子中替代品的性能评估,从而能够对替代品和变量进行更准确、更稳健的分析。本文旨在采用 CROWM 评估 CPAP 在防治 OSA 方面的有效性,其中考虑了六个性能标准:资源、保修、噪音、重量、成本和维护。通过对传统方法进行既定测试和敏感性分析验证,CROWM 证明了其在决策支持方面的一致性、效率和优越性。该方法将对果断决策产生重大影响,帮助医护人员、研究人员和患者选择最佳的 CPAP 解决方案,从而在跨学科研究背景下推进患者护理工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics
Informatics Social Sciences-Communication
CiteScore
6.60
自引率
6.50%
发文量
88
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信