Xiao Li, Yibin Zhang, Bao Qiu, Guoxin Chen, Yuhuan Zhou, Qingwen Gu, Zhaoping Liu
{"title":"Dependence of Initial Capacity Irreversibility on Oxygen Framework Chemistry in Li-Rich Layered Cathode Oxides","authors":"Xiao Li, Yibin Zhang, Bao Qiu, Guoxin Chen, Yuhuan Zhou, Qingwen Gu, Zhaoping Liu","doi":"10.1002/eem2.12722","DOIUrl":null,"url":null,"abstract":"<p>The undesirable capacity loss after first cycle is universal among layered cathode materials, which results in the capacity and energy decay. The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process. In this study, focusing on Ah-level pouch cells for reliability, an ultrahigh initial Coulombic efficiency (96.1%) is achieved in an archetypical Li-rich layered oxide material. Combining the structure and electrochemistry analysis, we demonstrate that the achievement of high-capacity reversibility is a kinetic effect, primarily related to the sluggish Li mobility during oxygen reduction. Activating oxygen reduction through small density would induce the oxygen framework contraction, which, according to Pauli repulsion, imposes a great repulsive force to hinder the transport of tetrahedral Li. The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and, more importantly, contributes to 6% Coulombic efficiency enhancement as well as 10% energy density improvement for pouch cells, which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12722","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The undesirable capacity loss after first cycle is universal among layered cathode materials, which results in the capacity and energy decay. The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process. In this study, focusing on Ah-level pouch cells for reliability, an ultrahigh initial Coulombic efficiency (96.1%) is achieved in an archetypical Li-rich layered oxide material. Combining the structure and electrochemistry analysis, we demonstrate that the achievement of high-capacity reversibility is a kinetic effect, primarily related to the sluggish Li mobility during oxygen reduction. Activating oxygen reduction through small density would induce the oxygen framework contraction, which, according to Pauli repulsion, imposes a great repulsive force to hinder the transport of tetrahedral Li. The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and, more importantly, contributes to 6% Coulombic efficiency enhancement as well as 10% energy density improvement for pouch cells, which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.