Xovee Xu, Ting Zhong, Haoyang Yu, Fan Zhou, Goce Trajcevski
{"title":"Overcoming Catastrophic Forgetting in Continual Fine-Grained Urban Flow Inference","authors":"Xovee Xu, Ting Zhong, Haoyang Yu, Fan Zhou, Goce Trajcevski","doi":"10.1145/3660523","DOIUrl":null,"url":null,"abstract":"Citywide fine-grained urban flow inference (FUFI) problem aims to infer the high-resolution flow maps from the coarse-grained ones, which plays an important role in sustainable and economic urban computing and intelligent traffic management. Previous models tackle this problem from spatial constraint, external factors and memory cost. However, utilizing the new urban flow maps to calibrate the learned model is very challenging due to the “catastrophic forgetting” problem and is still under-explored. In this paper, we make the first step in FUFI and present CUFAR – Continual Urban Flow inference with augmented Adaptive knowledge Replay – a novel framework for inferring the fine-grained citywide traffic flows. Specifically, (1) we design a spatial-temporal inference network that can extract better flow map features from both local and global levels; (2) then we present an augmented adaptive knowledge replay (AKR) training algorithm to selectively replay the learned knowledge to facilitate the learning process of the model on new knowledge without forgetting. We apply several data augmentation techniques to improve the generalization capability of the learning model, gaining additional performance improvements. We also propose a knowledge discriminator to avoid the “negative replaying” issue introduced by noisy urban flow maps. Extensive experiments on two large-scale real-world FUFI datasets demonstrate that our proposed model consistently outperforms strong baselines and effectively mitigates the forgetting problem.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3660523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Citywide fine-grained urban flow inference (FUFI) problem aims to infer the high-resolution flow maps from the coarse-grained ones, which plays an important role in sustainable and economic urban computing and intelligent traffic management. Previous models tackle this problem from spatial constraint, external factors and memory cost. However, utilizing the new urban flow maps to calibrate the learned model is very challenging due to the “catastrophic forgetting” problem and is still under-explored. In this paper, we make the first step in FUFI and present CUFAR – Continual Urban Flow inference with augmented Adaptive knowledge Replay – a novel framework for inferring the fine-grained citywide traffic flows. Specifically, (1) we design a spatial-temporal inference network that can extract better flow map features from both local and global levels; (2) then we present an augmented adaptive knowledge replay (AKR) training algorithm to selectively replay the learned knowledge to facilitate the learning process of the model on new knowledge without forgetting. We apply several data augmentation techniques to improve the generalization capability of the learning model, gaining additional performance improvements. We also propose a knowledge discriminator to avoid the “negative replaying” issue introduced by noisy urban flow maps. Extensive experiments on two large-scale real-world FUFI datasets demonstrate that our proposed model consistently outperforms strong baselines and effectively mitigates the forgetting problem.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.