{"title":"Carbon Monoxide Alleviates Post-ischemia-reperfusion Skeletal Muscle Injury and Systemic Inflammation.","authors":"K. Taguchi, Shigeru Ogaki, Hitoshi Maeda, Yu Ishima, Hiroshi Watanabe, Masaki Otagiri, Toru Maruyama","doi":"10.1248/bpb.b23-00917","DOIUrl":null,"url":null,"abstract":"Restoration of blood flow in skeletal muscle after a prolonged period of ischemia induces muscular ischemia-reperfusion injury, leading to local injury/dysfunction in muscles followed by systemic inflammatory responses. However, preventive/curative agents for skeletal muscle ischemia injury are unavailable in clinics to date. Increasing evidence has validated that carbon monoxide (CO) prevents the progression of ischemia-reperfusion injury in various organs owing to its versatile bioactivity. Previously, we developed a bioinspired CO donor, CO-bound red blood cells (CO-RBC), which mimics the dynamics of RBC-associated CO in the body. In the present study, we have tested the therapeutic potential of CO-RBC in muscular injury/dysfunction and secondary systemic inflammation induced by skeletal muscle ischemia-reperfusion. The results indicate that CO-RBC rather than RBC alone suppressed elevation of plasma creatine phosphokinase, a marker of muscular injury, in rats subjected to both hind limbs ischemia-reperfusion. In addition, the results of the treadmill walking test revealed a significantly decreased muscular motor function in RBC-treated rats subjected to both hind limbs ischemia-reperfusion than that in healthy rats, however, CO-RBC treatment facilitated sustained muscular motor functions after hind limbs ischemia-reperfusion. Furthermore, CO-RBC rather than RBC suppressed the production of tumour necrosis factor (TNF)-α and interleukin (IL)-6, which were upregulated by muscular ischemia-reperfusion. Interestingly, CO-RBC treatment induced higher levels of IL-10 compared to saline or RBC treatments. Based on these findings, we suggest that CO-RBC exhibits a suppressive effect against skeletal muscle injury/dysfunction and systemic inflammatory responses after skeletal muscle ischemia-reperfusion.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"101 32","pages":"868-871"},"PeriodicalIF":16.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b23-00917","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Restoration of blood flow in skeletal muscle after a prolonged period of ischemia induces muscular ischemia-reperfusion injury, leading to local injury/dysfunction in muscles followed by systemic inflammatory responses. However, preventive/curative agents for skeletal muscle ischemia injury are unavailable in clinics to date. Increasing evidence has validated that carbon monoxide (CO) prevents the progression of ischemia-reperfusion injury in various organs owing to its versatile bioactivity. Previously, we developed a bioinspired CO donor, CO-bound red blood cells (CO-RBC), which mimics the dynamics of RBC-associated CO in the body. In the present study, we have tested the therapeutic potential of CO-RBC in muscular injury/dysfunction and secondary systemic inflammation induced by skeletal muscle ischemia-reperfusion. The results indicate that CO-RBC rather than RBC alone suppressed elevation of plasma creatine phosphokinase, a marker of muscular injury, in rats subjected to both hind limbs ischemia-reperfusion. In addition, the results of the treadmill walking test revealed a significantly decreased muscular motor function in RBC-treated rats subjected to both hind limbs ischemia-reperfusion than that in healthy rats, however, CO-RBC treatment facilitated sustained muscular motor functions after hind limbs ischemia-reperfusion. Furthermore, CO-RBC rather than RBC suppressed the production of tumour necrosis factor (TNF)-α and interleukin (IL)-6, which were upregulated by muscular ischemia-reperfusion. Interestingly, CO-RBC treatment induced higher levels of IL-10 compared to saline or RBC treatments. Based on these findings, we suggest that CO-RBC exhibits a suppressive effect against skeletal muscle injury/dysfunction and systemic inflammatory responses after skeletal muscle ischemia-reperfusion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.