A comprehensive experimental study on the effects of hexagonal boron nitride particle size and loading ratio on thermal and mechanical performance in epoxy composites

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Samet Ozyigit, Mostafa Mehdipour, A. Al-Nadhari, Arvin T Tabrizi, Semih Dogan, Kuray Dericiler, Bertan Beylergil, Mehmet Yildiz, B. S. Okan
{"title":"A comprehensive experimental study on the effects of hexagonal boron nitride particle size and loading ratio on thermal and mechanical performance in epoxy composites","authors":"Samet Ozyigit, Mostafa Mehdipour, A. Al-Nadhari, Arvin T Tabrizi, Semih Dogan, Kuray Dericiler, Bertan Beylergil, Mehmet Yildiz, B. S. Okan","doi":"10.1177/00219983241247910","DOIUrl":null,"url":null,"abstract":"Harnessing the potential of hexagonal boron nitride (h-BN) in epoxy composites for tailoring thermal conductivity is a promising avenue in materials science. However, achieving balanced enhancements in both in-plane and through-plane directions remains a challenge that requires innovative solutions. The primary objective of this research is to evaluate how thermal and mechanical characteristics of an epoxy matrix are affected by the size and amount of h-BN particles. To achieve this goal, h-BN particles with varying sizes (micro and nano) are incorporated into the epoxy matrix at different weight ratios spanning from 0.5 wt % to 20 wt % using a pre-dispersion technique. The epoxy composites reinforced with h-BN through a molding process exhibits enhanced mechanical and thermal performance in contrast to the pristine epoxy material. During the flexural test, acoustic emission data is collected to identify the initiation and progression of damage within the specimens under testing conditions. The most notable enhancement in thermal conductivity is observed when incorporating 20 wt% of micron-sized h-BN particles. This leads to a remarkable 107% increase in the in-plane direction and an impressive 112% increase in the through-plane direction. These results can be attributed to the formation of a three-dimensional thermally conductive network by the larger h-BN particles, which extends the path of phonon scattering. Furthermore, there are significant improvements in both flexural modulus and tensile modulus. Epoxy composites containing 10 wt% of micron-sized h-BN experiences an approximate 42% increase, while those with 20 wt% of the same particles displays a substantial 47% rise in these properties. This study effectively addresses the challenges associated with tailoring the thermal properties of epoxy composites, opening up new opportunities for applications in various industries, including electronics, aerospace and thermal management systems.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241247910","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing the potential of hexagonal boron nitride (h-BN) in epoxy composites for tailoring thermal conductivity is a promising avenue in materials science. However, achieving balanced enhancements in both in-plane and through-plane directions remains a challenge that requires innovative solutions. The primary objective of this research is to evaluate how thermal and mechanical characteristics of an epoxy matrix are affected by the size and amount of h-BN particles. To achieve this goal, h-BN particles with varying sizes (micro and nano) are incorporated into the epoxy matrix at different weight ratios spanning from 0.5 wt % to 20 wt % using a pre-dispersion technique. The epoxy composites reinforced with h-BN through a molding process exhibits enhanced mechanical and thermal performance in contrast to the pristine epoxy material. During the flexural test, acoustic emission data is collected to identify the initiation and progression of damage within the specimens under testing conditions. The most notable enhancement in thermal conductivity is observed when incorporating 20 wt% of micron-sized h-BN particles. This leads to a remarkable 107% increase in the in-plane direction and an impressive 112% increase in the through-plane direction. These results can be attributed to the formation of a three-dimensional thermally conductive network by the larger h-BN particles, which extends the path of phonon scattering. Furthermore, there are significant improvements in both flexural modulus and tensile modulus. Epoxy composites containing 10 wt% of micron-sized h-BN experiences an approximate 42% increase, while those with 20 wt% of the same particles displays a substantial 47% rise in these properties. This study effectively addresses the challenges associated with tailoring the thermal properties of epoxy composites, opening up new opportunities for applications in various industries, including electronics, aerospace and thermal management systems.
六方氮化硼粒度和负载率对环氧树脂复合材料热性能和机械性能影响的综合实验研究
利用环氧树脂复合材料中六方氮化硼(h-BN)的潜力来定制导热性能是材料科学中一条前景广阔的途径。然而,如何在面内和面间两个方向上实现平衡增强仍然是一项挑战,需要创新的解决方案。本研究的主要目的是评估 h-BN 颗粒的大小和数量如何影响环氧基体的热特性和机械特性。为实现这一目标,采用预分散技术将不同尺寸(微米级和纳米级)的 h-BN 颗粒以 0.5 重量比到 20 重量比的不同比例加入环氧基体中。与原始环氧材料相比,通过模塑工艺用 h-BN 增强的环氧复合材料具有更高的机械性能和热性能。在挠曲测试过程中,通过收集声发射数据来确定测试条件下试样内部损伤的开始和发展。当加入 20 wt% 的微米级 h-BN 颗粒时,热导率得到了最显著的提高。这导致面内方向的热导率显著提高了 107%,面间方向的热导率显著提高了 112%。这些结果可归因于较大的 h-BN 颗粒形成了三维导热网络,从而延长了声子散射的路径。此外,挠曲模量和拉伸模量也有明显改善。含 10 wt% 微米级 h-BN 的环氧树脂复合材料的这些性能提高了约 42%,而含 20 wt% 相同颗粒的环氧树脂复合材料的这些性能则大幅提高了 47%。这项研究有效地解决了与定制环氧树脂复合材料热性能相关的难题,为电子、航空航天和热管理系统等各行各业的应用开辟了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信