Becky C. Mueller , Matthew L. Brumbelow , Haden Bragg , Jessica S. Jermakian
{"title":"Comparison of frontal crash compatibility metrics between battery-electric and internal-combustion-engine passenger vehicles","authors":"Becky C. Mueller , Matthew L. Brumbelow , Haden Bragg , Jessica S. Jermakian","doi":"10.1080/15389588.2024.2337126","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The objective of this study was to determine if there are any emerging issues related to battery-electric vehicles’ (BEVs’) geometry, force distribution, and extra weight that may make them more aggressive partners in front-to-front crashes through comparisons of stiffness metrics derived from crash tests.</p></div><div><h3>Methods</h3><p>We examined load cell wall data from the National Highway Traffic Safety Administration’s (NHTSA’s) New Car Assessment Program full-width frontal crash test at 56 km/h. Fourteen BEVs, ranging in class from small cars to large SUVs, were compared with 92 internal-combustion-engine (ICE) vehicles, ranging in class from small cars to midsize pickups. We selected vehicles based on the test results available in the NHTSA Vehicle Crash Test Database, and there were no tests of battery-electric (BE) pickups. Data included load-cell-wall force-time histories and longitudinal vehicle acceleration from the body structure. We constructed force-displacement diagrams and calculated static, dynamic, energy-equivalent, and initial front-end-stiffness metrics from load cell wall forces, vehicle acceleration, and static front-end crush measurements for each vehicle. Linear regression models were applied to the metrics for comparison between powertrains.</p></div><div><h3>Results</h3><p>BE cars and BE SUVs weighed more than their ICE counterparts, on average 369 kg and 286 kg more, respectively. Initial (200 mm and 400 mm), energy-equivalent and dynamic front-end-stiffness metrics, average height of force, and individual maximum forces, when compared with vehicle shadow, were not statistically different between powertrains. Static stiffness (<em>p</em> = 0.04) and initial stiffness (300 mm; <em>p</em> = 0.05) decreased for BEVs with greater shadow and increased with greater shadow for ICE vehicles. When controlling for vehicle shadow, dynamic crush was greater (<em>p</em> = 0.01), the percentage of center force was lower (<em>p</em> < 0.001), and maximum peak force was higher (<em>p</em> = 0.01) for BEVs compared with ICE vehicles. For the Kia Niro BEV and ICE pair, the 329 kg heavier BEV had a 165 mm longer crush distance, which resulted in lower forces and stiffness metrics compared with the traditional ICE counterpart.</p></div><div><h3>Conclusion</h3><p>Overall, this study indicates that current BEVs are not excessively aggressive in terms of stiffness metrics for frontal crash compatibility compared with ICE vehicles.</p></div>","PeriodicalId":54422,"journal":{"name":"Traffic Injury Prevention","volume":"25 5","pages":"Pages 750-756"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Injury Prevention","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1538958824000468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The objective of this study was to determine if there are any emerging issues related to battery-electric vehicles’ (BEVs’) geometry, force distribution, and extra weight that may make them more aggressive partners in front-to-front crashes through comparisons of stiffness metrics derived from crash tests.
Methods
We examined load cell wall data from the National Highway Traffic Safety Administration’s (NHTSA’s) New Car Assessment Program full-width frontal crash test at 56 km/h. Fourteen BEVs, ranging in class from small cars to large SUVs, were compared with 92 internal-combustion-engine (ICE) vehicles, ranging in class from small cars to midsize pickups. We selected vehicles based on the test results available in the NHTSA Vehicle Crash Test Database, and there were no tests of battery-electric (BE) pickups. Data included load-cell-wall force-time histories and longitudinal vehicle acceleration from the body structure. We constructed force-displacement diagrams and calculated static, dynamic, energy-equivalent, and initial front-end-stiffness metrics from load cell wall forces, vehicle acceleration, and static front-end crush measurements for each vehicle. Linear regression models were applied to the metrics for comparison between powertrains.
Results
BE cars and BE SUVs weighed more than their ICE counterparts, on average 369 kg and 286 kg more, respectively. Initial (200 mm and 400 mm), energy-equivalent and dynamic front-end-stiffness metrics, average height of force, and individual maximum forces, when compared with vehicle shadow, were not statistically different between powertrains. Static stiffness (p = 0.04) and initial stiffness (300 mm; p = 0.05) decreased for BEVs with greater shadow and increased with greater shadow for ICE vehicles. When controlling for vehicle shadow, dynamic crush was greater (p = 0.01), the percentage of center force was lower (p < 0.001), and maximum peak force was higher (p = 0.01) for BEVs compared with ICE vehicles. For the Kia Niro BEV and ICE pair, the 329 kg heavier BEV had a 165 mm longer crush distance, which resulted in lower forces and stiffness metrics compared with the traditional ICE counterpart.
Conclusion
Overall, this study indicates that current BEVs are not excessively aggressive in terms of stiffness metrics for frontal crash compatibility compared with ICE vehicles.
期刊介绍:
The purpose of Traffic Injury Prevention is to bridge the disciplines of medicine, engineering, public health and traffic safety in order to foster the science of traffic injury prevention. The archival journal focuses on research, interventions and evaluations within the areas of traffic safety, crash causation, injury prevention and treatment.
General topics within the journal''s scope are driver behavior, road infrastructure, emerging crash avoidance technologies, crash and injury epidemiology, alcohol and drugs, impact injury biomechanics, vehicle crashworthiness, occupant restraints, pedestrian safety, evaluation of interventions, economic consequences and emergency and clinical care with specific application to traffic injury prevention. The journal includes full length papers, review articles, case studies, brief technical notes and commentaries.