{"title":"A new virtual consensus-based wide area differential protection","authors":"Sayed Mahdi Koloushani, Seyed Abbas Taher","doi":"10.1049/gtd2.13168","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a virtual consensus-based wide area differential protection method through cooperative control concepts and graph theory. Using multi-agent systems eliminates the need for a direct telecommunication connection between the protective relays to implement the proposed differential protection. In addition, applying telecommunication subgraphs facilitates the establishment of numerous differential protection areas. Collaboration between protected areas is facilitated by common agents, establishing a wide-area cooperative protection network. The capability of the network operator to define various protection areas and the collaboration between these areas ensure the versatility of the proposed method for various protection purposes. The present paper primarily represents the application of the proposed protection system as a wide-area supervisor protection for distance relays. Performance evaluations on an IEEE 39-bus test system illustrate the method's effectiveness in various scenarios. The results show enhanced power system stability and resilience, particularly when traditional methods struggle to detect power swings with high impedance variation rates.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 9","pages":"1906-1918"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a virtual consensus-based wide area differential protection method through cooperative control concepts and graph theory. Using multi-agent systems eliminates the need for a direct telecommunication connection between the protective relays to implement the proposed differential protection. In addition, applying telecommunication subgraphs facilitates the establishment of numerous differential protection areas. Collaboration between protected areas is facilitated by common agents, establishing a wide-area cooperative protection network. The capability of the network operator to define various protection areas and the collaboration between these areas ensure the versatility of the proposed method for various protection purposes. The present paper primarily represents the application of the proposed protection system as a wide-area supervisor protection for distance relays. Performance evaluations on an IEEE 39-bus test system illustrate the method's effectiveness in various scenarios. The results show enhanced power system stability and resilience, particularly when traditional methods struggle to detect power swings with high impedance variation rates.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf