{"title":"In-Depth Analysis of the Complex Interactions Induced by Nanolayered Additives in PHBV Nanocomposites","authors":"Pablo-Manuel Martínez-Rubio, María-Dolores Avilés, Ramón Pamies, Sergio-José Benítez-Benítez, Alejandro Arribas, Francisco-José Carrión-Vilches, María-Dolores Bermúdez","doi":"10.1002/mame.202400016","DOIUrl":null,"url":null,"abstract":"<p>New nanocomposites based on biopolymer poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) (PHBV) are processed via extrusion, using low content of calcined hydrotalcite (CHT) and cloisite 20A (C20A) as additives (3 wt%). The aim of this work is to characterize the thermal and viscoelastic response of the structures induced by the presence of the additives. Field-emission scanning electron microscopy and laser profilometry are utilized to analyze the effect of the additives on the surface finish of extrusion filaments, detecting a smoother surface induced by additives. A lower degradation temperature is observed via thermogravimetry for composite containing CHT (PHBV+3%CHT), while such a phenomenon is not present in composite with C20A (PHBV+3%C20A). An increase in crystallinity due to the nucleating effect of additives is measured via differential scanning calorimetry. The intercalation of the biopolymer in the layered structure of the additives is observed via X-ray diffraction, reflecting the effective interaction in the composite matrix. The viscoelastic behavior of the samples is evaluated by means of rheology and dynamic-mechanical analysis, showing a non-Newtonian behavior and an enhancement of the vitreous state response. All results converge to the conclusion that the incorporation of the additives induces the formation of long-term structures that present variable sensitivity to temperature and frequency.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
New nanocomposites based on biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) are processed via extrusion, using low content of calcined hydrotalcite (CHT) and cloisite 20A (C20A) as additives (3 wt%). The aim of this work is to characterize the thermal and viscoelastic response of the structures induced by the presence of the additives. Field-emission scanning electron microscopy and laser profilometry are utilized to analyze the effect of the additives on the surface finish of extrusion filaments, detecting a smoother surface induced by additives. A lower degradation temperature is observed via thermogravimetry for composite containing CHT (PHBV+3%CHT), while such a phenomenon is not present in composite with C20A (PHBV+3%C20A). An increase in crystallinity due to the nucleating effect of additives is measured via differential scanning calorimetry. The intercalation of the biopolymer in the layered structure of the additives is observed via X-ray diffraction, reflecting the effective interaction in the composite matrix. The viscoelastic behavior of the samples is evaluated by means of rheology and dynamic-mechanical analysis, showing a non-Newtonian behavior and an enhancement of the vitreous state response. All results converge to the conclusion that the incorporation of the additives induces the formation of long-term structures that present variable sensitivity to temperature and frequency.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)