Fundamental Frequency Layer-Wise Optimization of Tow-Steered Composites Considering Gaps and Overlaps

A. Pagani, A. Racionero Sánchez-Majano, D. Zamani, M. Petrolo, E. Carrera
{"title":"Fundamental Frequency Layer-Wise Optimization of Tow-Steered Composites Considering Gaps and Overlaps","authors":"A. Pagani,&nbsp;A. Racionero Sánchez-Majano,&nbsp;D. Zamani,&nbsp;M. Petrolo,&nbsp;E. Carrera","doi":"10.1007/s42496-024-00212-w","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of Automated Fiber Placement (AFP) in aerospace composites lay-up and manufacturing has allowed orientations to vary along pre-defined curved directions rather than being forced to remain constant within the lamina. These composites are called Variable Angle Tow (VAT) or Variable Stiffness Composites (VSC). Despite the enhancements in mechanical performance offered by VAT, constraints from the manufacturing process hinder their full potential. This paper explores the effect of primary defects, i.e., gaps and overlaps, on optimal design and fundamental frequency optimization. For doing so, the Carrera Unified Formulation (CUF) and the Defect Layer Method (DLM) are integrated directly into the optimization process to provide an efficient and cost-effective framework for modeling the structural behavior and manufacturing process of VSCs. Particular attention is given to manufacturing and tow-steering simulation to quantify and map defects for each laminate layer. This research serves a dual purpose: (i) examining the impact of process-induced defects on achieving an optimal design and (ii) exploring how the choice of structural theory may affect the optimal solution.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"104 2","pages":"135 - 151"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-024-00212-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-024-00212-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of Automated Fiber Placement (AFP) in aerospace composites lay-up and manufacturing has allowed orientations to vary along pre-defined curved directions rather than being forced to remain constant within the lamina. These composites are called Variable Angle Tow (VAT) or Variable Stiffness Composites (VSC). Despite the enhancements in mechanical performance offered by VAT, constraints from the manufacturing process hinder their full potential. This paper explores the effect of primary defects, i.e., gaps and overlaps, on optimal design and fundamental frequency optimization. For doing so, the Carrera Unified Formulation (CUF) and the Defect Layer Method (DLM) are integrated directly into the optimization process to provide an efficient and cost-effective framework for modeling the structural behavior and manufacturing process of VSCs. Particular attention is given to manufacturing and tow-steering simulation to quantify and map defects for each laminate layer. This research serves a dual purpose: (i) examining the impact of process-induced defects on achieving an optimal design and (ii) exploring how the choice of structural theory may affect the optimal solution.

考虑间隙和重叠的拖束复合材料基频分层优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信