Stable sodium metal anode enabled by interfacial room-temperature liquid metal engineering for high-performance sodium–sulfur batteries with carbonate-based electrolyte

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Kangdong Tian, Chuanliang Wei, Zhengran Wang, Yuan Li, Baojuan Xi, Shenglin Xiong, Jinkui Feng
{"title":"Stable sodium metal anode enabled by interfacial room-temperature liquid metal engineering for high-performance sodium–sulfur batteries with carbonate-based electrolyte","authors":"Kangdong Tian,&nbsp;Chuanliang Wei,&nbsp;Zhengran Wang,&nbsp;Yuan Li,&nbsp;Baojuan Xi,&nbsp;Shenglin Xiong,&nbsp;Jinkui Feng","doi":"10.1002/idm2.12163","DOIUrl":null,"url":null,"abstract":"<p>Sodium (Na) metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density. However, the uncontrolled side reactions, unstable solid electrolyte interphase (SEI) and dendrite growth at the electrode/electrolyte interfaces impede the practical application of Na metal as anode. Herein, a heterogeneous Na-based alloys interfacial protective layer is constructed in situ on the surface of Na foil by self-diffusion of liquid metal at room temperature, named “HAIP Na.” The interfacial Na-based alloys layer with good electrolyte wettability and strong sodiophilicity, and assisted in the construction of NaF-rich SEI. By means of direct visualization and theoretical simulation, we verify that the interfacial Na-based alloys layer enabling uniform Na<sup>+</sup> flux deposition and suppressing the dendrite growth. As a result, in the carbonate-based electrolyte, the HAIP Na||HAIP Na symmetric cells exhibit a remarkably enhanced cycling life for more than 650 h with a capacity of 1 mAh cm<sup>−2</sup> at a current density of 1 mA cm<sup>−2</sup>. When the HAIP Na anode is paired with sulfurized polyacrylonitrile (SPAN) cathode, the SPAN||HAIP Na full cells demonstrate excellent rate performance and cycling stability.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"425-436"},"PeriodicalIF":24.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium (Na) metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density. However, the uncontrolled side reactions, unstable solid electrolyte interphase (SEI) and dendrite growth at the electrode/electrolyte interfaces impede the practical application of Na metal as anode. Herein, a heterogeneous Na-based alloys interfacial protective layer is constructed in situ on the surface of Na foil by self-diffusion of liquid metal at room temperature, named “HAIP Na.” The interfacial Na-based alloys layer with good electrolyte wettability and strong sodiophilicity, and assisted in the construction of NaF-rich SEI. By means of direct visualization and theoretical simulation, we verify that the interfacial Na-based alloys layer enabling uniform Na+ flux deposition and suppressing the dendrite growth. As a result, in the carbonate-based electrolyte, the HAIP Na||HAIP Na symmetric cells exhibit a remarkably enhanced cycling life for more than 650 h with a capacity of 1 mAh cm−2 at a current density of 1 mA cm−2. When the HAIP Na anode is paired with sulfurized polyacrylonitrile (SPAN) cathode, the SPAN||HAIP Na full cells demonstrate excellent rate performance and cycling stability.

Abstract Image

通过界面室温液态金属工程实现稳定的金属钠阳极,用于使用碳酸盐基电解质的高性能钠硫电池
金属钠(Na)成本低、能量密度高,是下一代储能应用中极具竞争力的阳极。然而,不可控的副反应、不稳定的固体电解质相(SEI)以及电极/电解质界面上的枝晶生长阻碍了金属钠作为阳极的实际应用。在此,通过液态金属在室温下的自扩散,在 Na 箔表面原位构建了异质 Na 基合金界面保护层,命名为 "HAIP Na"。该界面Na基合金层具有良好的电解质润湿性和较强的亲钠性,有助于构建富含NaF的SEI。通过直接观察和理论模拟,我们验证了界面 Na 基合金层能使 Na+ 通量均匀沉积并抑制枝晶生长。因此,在碳酸盐基电解质中,HAIP Na||HAIP Na 对称电池的循环寿命显著提高,在电流密度为 1 mA cm-2 时,电池容量为 1 mAh cm-2,循环时间超过 650 小时。当 HAIP Na 阳极与硫化聚丙烯腈(SPAN)阴极配对时,SPAN||HAIP Na 全电池表现出卓越的速率性能和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信