Genome structural dynamics: insights from Gaussian network analysis of Hi-C data.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anupam Banerjee, She Zhang, Ivet Bahar
{"title":"Genome structural dynamics: insights from Gaussian network analysis of Hi-C data.","authors":"Anupam Banerjee, She Zhang, Ivet Bahar","doi":"10.1093/bfgp/elae014","DOIUrl":null,"url":null,"abstract":"Characterization of the spatiotemporal properties of the chromatin is essential to gaining insights into the physical bases of gene co-expression, transcriptional regulation and epigenetic modifications. The Gaussian network model (GNM) has proven in recent work to serve as a useful tool for modeling chromatin structural dynamics, using as input high-throughput chromosome conformation capture data. We focus here on the exploration of the collective dynamics of chromosomal structures at hierarchical levels of resolution, from single gene loci to topologically associating domains or entire chromosomes. The GNM permits us to identify long-range interactions between gene loci, shedding light on the role of cross-correlations between distal regions of the chromosomes in regulating gene expression. Notably, GNM analysis performed across diverse cell lines highlights the conservation of the global/cooperative movements of the chromatin across different types of cells. Variations driven by localized couplings between genomic loci, on the other hand, underlie cell differentiation, underscoring the significance of the four-dimensional properties of the genome in defining cellular identity. Finally, we demonstrate the close relation between the cell type-dependent mobility profiles of gene loci and their gene expression patterns, providing a clear demonstration of the role of chromosomal 4D features in defining cell-specific differential expression of genes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Characterization of the spatiotemporal properties of the chromatin is essential to gaining insights into the physical bases of gene co-expression, transcriptional regulation and epigenetic modifications. The Gaussian network model (GNM) has proven in recent work to serve as a useful tool for modeling chromatin structural dynamics, using as input high-throughput chromosome conformation capture data. We focus here on the exploration of the collective dynamics of chromosomal structures at hierarchical levels of resolution, from single gene loci to topologically associating domains or entire chromosomes. The GNM permits us to identify long-range interactions between gene loci, shedding light on the role of cross-correlations between distal regions of the chromosomes in regulating gene expression. Notably, GNM analysis performed across diverse cell lines highlights the conservation of the global/cooperative movements of the chromatin across different types of cells. Variations driven by localized couplings between genomic loci, on the other hand, underlie cell differentiation, underscoring the significance of the four-dimensional properties of the genome in defining cellular identity. Finally, we demonstrate the close relation between the cell type-dependent mobility profiles of gene loci and their gene expression patterns, providing a clear demonstration of the role of chromosomal 4D features in defining cell-specific differential expression of genes.
基因组结构动力学:从对 Hi-C 数据的高斯网络分析中获得的启示。
要深入了解基因共表达、转录调控和表观遗传修饰的物理基础,染色质时空特性的表征至关重要。最近的研究证明,高斯网络模型(GNM)是利用高通量染色体构象捕获数据建立染色质结构动态模型的有用工具。在此,我们将重点放在探索染色体结构的分层动态,从单基因位点到拓扑关联域或整个染色体。GNM 使我们能够识别基因位点之间的长程相互作用,从而揭示染色体远端区域之间的交叉关联在调控基因表达中的作用。值得注意的是,在不同细胞系中进行的 GNM 分析凸显了不同类型细胞中染色质全局/合作运动的一致性。另一方面,基因组位点间局部耦合驱动的变异是细胞分化的基础,凸显了基因组的四维特性在确定细胞身份方面的重要性。最后,我们证明了基因位点随细胞类型而变化的流动性特征与其基因表达模式之间的密切关系,清楚地表明了染色体四维特征在确定细胞特异性基因差异表达中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信