Improving hydrodynamic performance of surface piercing propeller through trailing-edge optimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Zarezadeh, N. M. Nouri, R. Madoliat
{"title":"Improving hydrodynamic performance of surface piercing propeller through trailing-edge optimization","authors":"M. Zarezadeh, N. M. Nouri, R. Madoliat","doi":"10.1177/14750902241244417","DOIUrl":null,"url":null,"abstract":"Automated optimization is increasingly used in engineering applications. In this study, RANS-based CFD, the NSGA II algorithm, and Kriging were used to optimize a section of a marine surface piercing Propeller (SPP) set. The hydrodynamic performance of the SPP is also determined using the CFD tool. The optimization process involves the NSGA II algorithm in combination with the Kriging method. The optimized geometry is simulated using the CFD tool. Then, the obtained results are added to the initial population and the optimization is repeated in the next iteration. Thus, fewer simulations were required because the addition of the data with the surrogate method was accompanied by a good distribution, using surface methods for the replacement of the main part in the required calculations. As shown, the trailing edge optimization can improve Kt in J = 1 by almost 10.5%, and Kq changes by almost 12%, so this method can be used as an optimization package for similar problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241244417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated optimization is increasingly used in engineering applications. In this study, RANS-based CFD, the NSGA II algorithm, and Kriging were used to optimize a section of a marine surface piercing Propeller (SPP) set. The hydrodynamic performance of the SPP is also determined using the CFD tool. The optimization process involves the NSGA II algorithm in combination with the Kriging method. The optimized geometry is simulated using the CFD tool. Then, the obtained results are added to the initial population and the optimization is repeated in the next iteration. Thus, fewer simulations were required because the addition of the data with the surrogate method was accompanied by a good distribution, using surface methods for the replacement of the main part in the required calculations. As shown, the trailing edge optimization can improve Kt in J = 1 by almost 10.5%, and Kq changes by almost 12%, so this method can be used as an optimization package for similar problems.
通过尾缘优化提高表面穿孔螺旋桨的水动力性能
自动优化在工程应用中的应用越来越广泛。在本研究中,基于 RANS 的 CFD、NSGA II 算法和 Kriging 被用于优化船用表面穿孔螺旋桨(SPP)的一个部分。同时还使用 CFD 工具确定了 SPP 的流体动力学性能。优化过程包括 NSGA II 算法与克里金法的结合。使用 CFD 工具对优化后的几何形状进行模拟。然后,将获得的结果添加到初始群体中,并在下一次迭代中重复优化。因此,由于使用代用方法添加的数据分布良好,在所需的计算中使用曲面方法替换主要部分,因此所需的模拟次数较少。如图所示,后缘优化可以将 J = 1 中的 Kt 提高近 10.5%,Kq 变化近 12%,因此该方法可用作类似问题的优化包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信