Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements

Baki Osman Bekgöz, Zerrin Günkaya, Kemal Özkan, Metin Özkan, Aysun Özkan, Müfide Banar
{"title":"Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements","authors":"Baki Osman Bekgöz,&nbsp;Zerrin Günkaya,&nbsp;Kemal Özkan,&nbsp;Metin Özkan,&nbsp;Aysun Özkan,&nbsp;Müfide Banar","doi":"10.1007/s42768-023-00187-7","DOIUrl":null,"url":null,"abstract":"<div><p>Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher <i>R</i><sup>2</sup> values (&gt;0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest <i>R</i><sup>2</sup> (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction (<i>R</i><sup>2</sup>=0.95) compared to the prediction from the direct elemental data (<i>R</i><sup>2</sup>=0.99).</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"429 - 437"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00187-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00187-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher R2 values (>0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest R2 (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction (R2=0.95) compared to the prediction from the direct elemental data (R2=0.99).

Graphical abstract

Abstract Image

利用卷积神经网络预测元素数据和光谱测量结果,基于回归法预测垃圾衍生燃料的较高热值
较高的热值(HHV)是水泥行业用化石燃料替代垃圾衍生燃料(RDF)的关键参数。高热值可以用炸弹量热计测量,也可以通过回归模型从直接元素数据中预测。这两种方法都需要连续使用特殊的实验室设备,而且耗时较长。为了克服这些局限性,本研究旨在利用回归模型从预测的元素数据中预测 RDF 的 HHV 值。因此,一旦生成了预测元素数据,就不需要连续的元素数据来预测 HHV 值。通过使用深度学习模型,从直接元素数据和基于近红外(NIR)相机的光谱数据生成预测元素数据。深度学习使用的是卷积神经网络(CNN)模型,使用 10,500 个近红外图像样本进行训练,每个样本的大小为 28×28×1。不同的回归模型(线性模型、树型模型、支持向量机模型、集合模型和高斯过程模型)被用于 HHV 预测。结果表明,高斯过程模型(有理二次模型除外)预测元素数据的 R2 值较高 (>0.85)。在高斯模型中,Mattern 5/2 模型的 R2 值(0.95)最高,但均方根误差(RMSE)(0.0563)、均方根误差(MSE)(0.0317)和均方根绝对误差(MAE)(0.0431)最低。预测元素数据的结果与直接元素数据的预测结果进行了比较。结果表明,与直接元素数据的预测结果(R2=0.99)相比,预测元素数据的回归结果具有足够的预测能力(R2=0.95)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信