Gurpreet S Kharey, V. Palace, L. Whyte, Charles W. Greer
{"title":"Native freshwater lake microbial community response to an in situ experimental dilbit spill.","authors":"Gurpreet S Kharey, V. Palace, L. Whyte, Charles W. Greer","doi":"10.1093/femsec/fiae055","DOIUrl":null,"url":null,"abstract":"With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms