Thomas C Mules, Jeffry S Tang, Francesco Vacca, Bibek Yumnam, Alfonso Schmidt, Brittany Lavender, Kate Maclean, Sophia-Louise Noble, Craig Waugh, Roel van Ginkel, Mali Camberis, Graham Le Gros, Stephen Inns
{"title":"Modulation of intestinal epithelial permeability by chronic small intestinal helminth infections","authors":"Thomas C Mules, Jeffry S Tang, Francesco Vacca, Bibek Yumnam, Alfonso Schmidt, Brittany Lavender, Kate Maclean, Sophia-Louise Noble, Craig Waugh, Roel van Ginkel, Mali Camberis, Graham Le Gros, Stephen Inns","doi":"10.1111/imcb.12749","DOIUrl":null,"url":null,"abstract":"<p>Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth <i>Heligmosomoides polygyrus</i> to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, <i>Necator americanus</i>. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 5","pages":"396-406"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12749","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.