{"title":"Low-regularity exponential-type integrators for the Zakharov system with rough data in all dimensions","authors":"Hang Li, Chunmei Su","doi":"10.1090/mcom/3973","DOIUrl":null,"url":null,"abstract":"<p>We propose and analyze a type of low-regularity exponential-type integrators (LREIs) for the Zakharov system (ZS) with rough solutions. Our LREIs include a first-order integrator and a second-order one, and they achieve optimal convergence under weaker regularity assumptions on the exact solution compared to the existing numerical methods in literature. Specifically, the first-order integrator exhibits linear convergence in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript m plus 2 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m plus 1 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi>m</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^{m+2}(\\mathbb {T}^d)\\times H^{m+1}(\\mathbb {T}^d)\\times H^m(\\mathbb {T}^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for solutions in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript m plus 3 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m plus 2 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis times upper H Superscript m plus 1 Baseline left-parenthesis double-struck upper T Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^{m+3}(\\mathbb {T}^d)\\times H^{m+2}(\\mathbb {T}^d)\\times H^{m+1}(\\mathbb {T}^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than d slash 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>d</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m>d/2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, meaning that only the boundedness of one additional derivative of the solution is required to achieve the first-order convergence. While for the second-order integrator, we show that it achieves second-order accuracy by requiring the boundedness of two additional spatial derivatives of the solution. The order of additional derivatives required is reduced by half compared to the classical trigonometric integrators. The main techniques to design the integrators include a reformulation by introducing new variables to exclude the loss of spatial regularity in the original ZS, accurate integration for the dominant term in the linear part of the equations and appropriate approximations (or averaging approximations) to the exponential phase functions involving the nonlinear interactions. Numerical comparisons with classical integrators confirm that our newly proposed LREIs are superior in accuracy and robustness for handling rough data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and analyze a type of low-regularity exponential-type integrators (LREIs) for the Zakharov system (ZS) with rough solutions. Our LREIs include a first-order integrator and a second-order one, and they achieve optimal convergence under weaker regularity assumptions on the exact solution compared to the existing numerical methods in literature. Specifically, the first-order integrator exhibits linear convergence in Hm+2(Td)×Hm+1(Td)×Hm(Td)H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d)\times H^m(\mathbb {T}^d) for solutions in Hm+3(Td)×Hm+2(Td)×Hm+1(Td)H^{m+3}(\mathbb {T}^d)\times H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d) if m>d/2m>d/2, meaning that only the boundedness of one additional derivative of the solution is required to achieve the first-order convergence. While for the second-order integrator, we show that it achieves second-order accuracy by requiring the boundedness of two additional spatial derivatives of the solution. The order of additional derivatives required is reduced by half compared to the classical trigonometric integrators. The main techniques to design the integrators include a reformulation by introducing new variables to exclude the loss of spatial regularity in the original ZS, accurate integration for the dominant term in the linear part of the equations and appropriate approximations (or averaging approximations) to the exponential phase functions involving the nonlinear interactions. Numerical comparisons with classical integrators confirm that our newly proposed LREIs are superior in accuracy and robustness for handling rough data.
我们针对具有粗糙解的扎哈罗夫系统(ZS)提出并分析了一种低正则指数型积分器(LREIs)。我们的 LREIs 包括一个一阶积分器和一个二阶积分器,与文献中现有的数值方法相比,它们在精确解的较弱规则性假设下实现了最佳收敛。具体来说一阶H m + 2 ( T d ) × H m + 1 ( T d ) × H m ( T d ) H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d)\times H^m(\mathbb {T}^d) 中的解的线性收敛性。 m + 3 ( T d ) × H m + 2 ( T d ) × H m + 1 ( T d ) H^{m+3}(\mathbb {T}^d)\times H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d) if m > d / 2 m>d/2 、这意味着只需要求解的一个额外导数的有界性就能实现一阶收敛。而对于二阶积分器,我们证明它通过要求解的两个额外空间导数的有界性来实现二阶精度。与经典的三角积分器相比,所需的额外导数阶数减少了一半。设计积分器的主要技术包括:通过引入新变量进行重新表述,以排除原始 ZS 中空间规则性的损失;对方程线性部分的主要项进行精确积分;对涉及非线性相互作用的指数相位函数进行适当近似(或平均近似)。与经典积分器的数值比较证实,我们新提出的 LREIs 在处理粗糙数据方面具有更高的准确性和鲁棒性。